Welding of IN792 DS Superalloy by High Energy Density Techniques

Article Preview

Abstract:

Laser (LBW) and Electron Beam (EBW) welding have been used to produce seams on 2 mm thick plates of directionally solidified (DS) IN792 superalloy. For each welding technique a grid of samples were prepared by varying the pass speed (v) and keeping constant the other process parameters. The experiments were carried out at room temperature and with pre-heating (PHT) at 200 °C and 300 °C to find the best process conditions. The microstructural changes in molten zone (MZ) and heat affected zone (HAZ) were investigated finding that EBW guarantee a better quality and efficiency of the process without any macro defects. About the microstructure, the amount of ordered γ’ phase in the MZ is similar (≈ 25 %) for both welding techniques and quite lower than the value (70 %) of the original alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

166-177

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.T. Sims, N.S. Stoloff, W.C. Hagel in Superalloys II, Wiley, New York, (1986).

Google Scholar

[2] R.C. Reed, The superalloys: fundamentals and applications, Cambridge University Press, (2006).

Google Scholar

[3] D. Locq, A. Walder, M. Marty, P. Caron, in Development of New PM Superalloys for High Temperature Applications, Proc. of EUROMAT, Intermetallics and Superalloys Vol. 10, WILEY-VCH Verlag Gmbh, Weinheim, Germany, (2000).

DOI: 10.1002/3527607285.ch9

Google Scholar

[4] H. Monjati, M. Jahazi, R. Bahrami, S. Yue, Mater. Sci. Eng. A 373 (2004) 286-293.

Google Scholar

[5] A.M. Ges, O. Fornaro, H.A. Palacio, Mater. Sci. Eng. A 458 (2007) 96-100.

Google Scholar

[6] W. Betteridge, J. Heslop in The Nimonic Alloys, and Other Nickel-Base High-TempratureAlloys, New York, (1974).

Google Scholar

[7] M. Tresa Pollock, T. Sammy in Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure, and Properties, University of Michigan, Ann Arbor, Michigan 48109, University of Cambridge, Cambridge, England CB2 3QZ, United Kingdom, (2006).

Google Scholar

[8] P. Deodati, R. Montanari, O. Tassa, N. Ucciardello, Mater. Sci. Eng. A 521-522 (2009) 102-105.

Google Scholar

[9] S.A. David, J.M. Vitek, S.S. Babu, Welding of nickel base superalloy single crystals, ORNL TN 37831-6095.

Google Scholar

[10] O.A. Ojo, N.L. Richards, M.C. Chaturvedi, Microstructural study of weld fusion zone of TIG welded IN 738LC nickel-based superalloy, Scripta Materialia 51 (2004) 683-688.

DOI: 10.1016/j.scriptamat.2004.06.013

Google Scholar

[11] M.B. Henderson, D. Arrell, M. Heobel, R. Larsson, G. Marchanty, Nickel-Based Superalloy Welding Practices for Industrial Gas Turbine Applications, Science and Technology of Welding and Joining 9 (2013)13-21.

DOI: 10.1179/136217104225017099

Google Scholar

[12] M.V.R.S. Jensen, D. Dye, K.E. James, A.M. Korsunsky, S. M. Roberts, R. C. Reed, Residual stresses in a welded superalloy disc: Characterization using synchrotron diffraction and numerical process modeling, Metall. Trans. A, 33A(9) (2002).

DOI: 10.1007/s11661-002-0277-0

Google Scholar

[13] D.S. Duvall, W.A. Owezarski, D.F. Paulonis, Transient Liquid Phase Bonding: A New Method for Joining Heat Resistant Alloys, Weld J., 53 (1974) 203-214.

Google Scholar

[14] G.S. Hoppin, T.F. Berry, Activated diffusion bonding, Weld J. 11 (1970) 505-509.

Google Scholar

[15] J. Lescourges, Proc. of AGARD Specialist Meeting, Oberammergau (1985).

Google Scholar

[16] A.A. Shirzadi, E.R. Wallach, Temperature gradient transient liquid phase diffusion bonding: a new method for joining advanced materialsSci. Techn. Weld. Join. 2 (3) (1997) 89-94.

DOI: 10.1179/stw.1997.2.3.89

Google Scholar

[17] C. Pascal, R.M. Marin-Ayral, J.C. Tedenac, C. Merlet, Combustion synthesis: a new route for repair of gas turbine components-achievements and perspectives for development of SHS rebuilding, J. Mater. Proc. Techn. 135 (2003) 91-100.

DOI: 10.1016/s0924-0136(02)01047-6

Google Scholar

[18] F. Zapirain, F. Zubiri, F. Garciandía, I. Tolosa, S. Chueca, A. Goiria, Development of laser welding of Ni based superalloys for aeronautic engine applications (experimental process and obtained properties), Phys. Procedia 12 (2011) 105-112.

DOI: 10.1016/j.phpro.2011.03.014

Google Scholar

[19] G.Q. Chen, B. Zhang, T. Lu, J.C. Feng, Causes and control of welding cracks in electron-beam-welded superalloy GH4169 joints, Trans. Nonferrous Met. Soc. China 23 (2013) 1971-(1976).

DOI: 10.1016/s1003-6326(13)62685-0

Google Scholar

[20] M.T. Rush, P.A. Colegrove, Z. Zhang, B. Courtot, An investigation into cracking in nickel-base superalloy repair welds, Adv. Mater. Res. 89-91 (2010) 467-472.

DOI: 10.4028/www.scientific.net/amr.89-91.467

Google Scholar

[21] Xiu-Bo Liu, Gang Yu, Jian Guob, Yi-Jie Gu, Ming Pang, Cai-Yun Zheng, Heng-Hai Wang, J. Alloy Comp. 453 (2008) 371-378.

Google Scholar

[22] Huei-Sen Wang1, Chih-Ying Huang, Kuen-Sen Ho, Sian-Jhih Deng, Mater. Trans. 52-No. 12 (2011) 2197-2204.

Google Scholar

[23] D.J. Tillack, Welding Journal 86 (2007) 28-32.

Google Scholar

[24] R. Montanari, A. Varone, G. Barbieri, P. Soltani, S. Kaciulis, Welding of IN792 DS superalloy by electron beam, Surf. Interf. Anal., 48 (2016).

DOI: 10.1002/sia.5946

Google Scholar