Interaction between Molten Alloys and Electro-Magnetic Fields: Levitation and Cold Crucible

Article Preview

Abstract:

The physics of the interaction between a liquid metals and an externally applied magnetic field is analysed starting from the basic equations of the phenomena involved: electromagnetic fields, fluid dynamics, viscosity and surface tension. A set of general equations is deduced to describe a levitation melting system. The equations are progressively simplified in order to highlight the most important contributions to the phenomena. The basis criteria for the design and operation of a cold crucible system are then described and together with some of the experimental results obtained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-67

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Lorrain, D. Corson, F. Lorrain: Electromagnetic fields and waves, Freeman, (1988).

Google Scholar

[2] D. Jiles, Introduction to magnetism and magnetic materials, CRC press, (1998).

Google Scholar

[3] F. Fiorillo, Measurement and characterization of magnetic materials, Elsevier, (2004).

Google Scholar

[4] G.W. Sutton, A. Sherman, Engineering Magnetohydrodynamics, McGraw-Hill (1965).

Google Scholar

[5] J. P. Freidberg, Ideal Magnetohydrodynamics, Cambridge University Press, (2014).

Google Scholar

[6] A. D. Sneyd, H. K. Moffat, Fluid dynamical aspects of the levitation-melting process, J . Fluid Mech. , vol. 117, (1982).

DOI: 10.1017/s0022112082001517

Google Scholar

[7] Bonvalot M., Courtois P., Gillon P., Tournier R. Magnetic levitation stabilized by eddy currents, J. Magn. Magn. Mater., 151, (1995).

DOI: 10.1016/0304-8853(95)00313-4

Google Scholar

[8] X. R. Zhu, R. A. Harding, and J. Campbell, Calculation of the free surface shape in the electromagnetic processing of liquid metals" , Appl. Math. Modelling , 2, (1997).

DOI: 10.1016/s0307-904x(97)00008-5

Google Scholar

[9] F. Negrini, M. Fabbri, M. Zuccarini, E. Takeuchi, M. Tani, Electromagnetic control of the meniscus shape during casting in a high frequency magnetic field, Energy Conversion & Management 41 , (2000).

DOI: 10.1016/s0196-8904(99)00185-5

Google Scholar

[10] K. Takatani, Mathematical Modeling of Incompressible MHD Flows with Free Surface", ISIJ International, vol. 47, 4, (2007).

DOI: 10.2355/isijinternational.47.545

Google Scholar

[11] V. Bojarevics, R.A. Harding, K. Pericleous, And M. Wickins, "The development and experimental validation of a numerical model of an induction skull melting furnace, Metallurgical And Materials Trans. B, Vol. 35b, (2004).

DOI: 10.1007/s11663-004-0019-3

Google Scholar

[12] Ernst R., Garnier C., Petitpas P., Trassy C. 2D and 3D numerical modelling of a cold crucible for optimizing of industrial processes, Proc. HES-07, Padova, Italy, (2007).

Google Scholar

[13] V. Bojarevics and K. Pericleous Dynamic melting model for small, samples in cold crucible, COMPEL vol 27, 2, (2008).

DOI: 10.1108/03321640810847634

Google Scholar

[14] A. Umbrasko, E. Baake and B. Nacke, A. Jakovics, Numerical studies of the melting process in the induction furnace with cold crucible, vol 27, 2 , (2008).

DOI: 10.1108/03321640810847643

Google Scholar

[15] S. Spitans, A. Jakovics, E. Baake, B. Nacke, Numerical Modeling of Free Surface Dynamics of Melt in an Alternate Electromagnetic Field: Part I. Implementation and Verification of Model, Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, Vol. 44, Issue 3, (2013).

DOI: 10.1007/s11663-013-9809-9

Google Scholar

[16] G. Chitarin, G. Timelli, R. Losco, F. Bonollo Development and operational experience on Cold Crucible Levitation Melting apparatus for light metal casting, Proc. of international conference on Heating by Electromagnetic Sources HES-13, Padova, (2013).

Google Scholar

[17] Timelli G., Chitarin G., Tiziani A., Bonollo F. Design and realization of an experimental CCLM system for light alloys, Metall. Ital., 106, (2012).

Google Scholar

[18] S. Spitans, , E. Baake, B. Nacke, A. Jakovics, Numerical Modeling of Free Surface Dynamics of Melt in an Alternate Electromagnetic Field. Part II: Conventional Electromagnetic Levitation, Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, Vol. 47, Issue 1, (2016).

DOI: 10.1007/s11663-015-0515-7

Google Scholar