[1]
Gupt. K. M., Yavoisky, N. I., Vishkaryov, A. F. and Bliznakov, S. A. 1972/73 Met. Eng. Ind. Inst. Technol., Bombay 1972/73, 39-45.
Google Scholar
[2]
Gupt. K. M., Yavoisky, N. I., Vishkaryov, A. F. and Bliznakov, S. A. 1976 Trans. Ind. Inst. Metals 29, 286-291.
Google Scholar
[3]
Ishizaki, K. 1965 Interfacial tension theory of arc welding phenomena: formation of welding bead. J. Jao. Weld. Soc. 34, 146.
Google Scholar
[4]
Heiple, C.A. and Roper, J. R. 1982 Mechanism for minor element effect on GTA fusion zone geometry. Welding J. 61 975s.
Google Scholar
[5]
Oreper, G. M. and Szekely, J. 1984 Heat and fluid flow phenomena in weld pools. J. Fluid. Mech. 147, 55.
DOI: 10.1017/s0022112084001981
Google Scholar
[6]
Kou, S and Sun, D. K. 1985 Fluid flow and weld penetration in stationary arc welds. Metall. Trans. A 16, 203.
DOI: 10.1007/bf02816047
Google Scholar
[7]
Mill, K.C., Keene B. J., Brooks R. F. and Shirali A. 1998 Marangoni effects in welding. Phil. Trans. R. Soc. Lond. A , 356, 911-925.
Google Scholar
[8]
Burgardt, P. and Heiple, C. A. 1986 Interaction between impurities and welding parameters in determining GTA weld shape. Welding J. 65, 150s-155s.
Google Scholar
[9]
T. Zacharia, J.M. Vitek, J.A. Goldak, T.A. DebRoy, M. Rappaz, and H.K.D.H. Bhadeshia, Modeling of fundamental phenomena in welds, Modelling Simul. Mater. Sci. Eng. (1995), no. 3, 265–288.
DOI: 10.1088/0965-0393/3/2/009
Google Scholar
[10]
G. J ̈onsson, J. Szekely, R.T.C. Choo, and T.P. Quinn, Mathematical models of transport phenomena associated with arc-welding processes, a survey, Modelling Simul. Mater. Sci. Eng. (1994), no. 2, 995–1016.
DOI: 10.1088/0965-0393/2/5/005
Google Scholar
[11]
Y.P. Lei, Y.W. Shi, Numerical treatment of the boundary conditions and source terms on a spot welding process with combining buoyancy-Marangoni-driven flow, Numerical Heat Transfer 26B (1994) 455-471.
DOI: 10.1080/10407799408914940
Google Scholar
[12]
A. Matunawa, S. Yokoya, Y. Asako, Convection in weld pool and its effect on penetration shape in stationary arc welds, Q. J. of Japan Welding Society 6 (1987) 3-10.
DOI: 10.2207/qjjws.6.455
Google Scholar
[13]
T. Zacharia, S.A. David, J.M. Vitek, T. DebRoy, Weld pool development during GTA and laser beam welding of Type 304 stainless steel, part 1 - theoretical analysis, Welding Journal 68 (1989) 499s-509s.
Google Scholar
[14]
K.C. Tsao, C.S. Wu, Fluid flow and heat transfer in GMA weld pools, Welding Journal 67 (1988) 70s-75s.
Google Scholar
[15]
R.T.C. Choo, J. Szekely, S.A. David, On the calculation of the free surface temperature of gas-tungsten arc weld pools from ®rst principles: part 2. Modeling the weld pool and comparison with experiments, Metall. Trans. B 23B (1992) 371-384.
DOI: 10.1007/bf02656292
Google Scholar
[16]
K.C. Hsu, K. Etemadi, E. Pfender, Study of the free-burning high-intensity argon arc, J. Appl. Phys. 54 (3) (1983) 1293–1299.
DOI: 10.1063/1.332195
Google Scholar
[17]
M.C. Tsai, S. Kou, Heat transfer and fluid flow in welding arcs produced by sharpened and flat electrodes, Int. J. Heat Mass Transfer 33 (10) (1990) 2089–(2098).
DOI: 10.1016/0017-9310(90)90111-7
Google Scholar
[18]
W. -H. Kim, H.G. Fan, S. -J. Na, A mathematical model of gas tungsten arc welding considering the cathode and the free surface of the weld pool, Metall. Mater. Trans. B 28 (1997) 679–686.
DOI: 10.1007/s11663-997-0042-2
Google Scholar
[19]
J. -H. Lee, S. -J. Na, An analysis of volumetric radiation heat flux and experimental comparison with arc light sensing in GTA welding process, J. Mater. Process. Tech. 110 (2001) 104–110.
DOI: 10.1016/s0924-0136(00)00868-2
Google Scholar
[20]
R.T.C. Choo, J. Szekely, R.C. Westhoff, On the calculation of the free surface temperature of gas-tungsten-arc weld pools from first principles: Part I. Modeling the welding arc, Metall. Trans. B 23 (1992) 357–369.
DOI: 10.1007/bf02656291
Google Scholar
[21]
Y.M. Zhang, Z.N. Cao, et al., Numerical analysis of fully penetrated weld pools in gas tungsten arc welding, Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 210 (1996) 187–195.
DOI: 10.1243/pime_proc_1996_210_185_02
Google Scholar
[22]
H.G. Fan, H.L. Tsai, S.J. Na, Heat transfer and fluid flow in a partially or fully penetrated weld pool in gas tungsten arc welding, Int. J. Heat Mass Transfer 44 (2001) 417–428.
DOI: 10.1016/s0017-9310(00)00094-6
Google Scholar
[23]
F. Lu, S. Yao, S. Lou, Y. Li. Modeling and finite element analysis on GTAW arc and weld pool. Computational materials Science 29 (2004) 371-378.
DOI: 10.1016/j.commatsci.2003.10.009
Google Scholar
[24]
F. Lu, X. Tang, H. Yu, S. Yao. Numerical simulation on interaction between TIG welding arc and weld pool. Computational materials Science 35 (2006) 458-465.
DOI: 10.1016/j.commatsci.2005.03.014
Google Scholar
[25]
K. Mundra, T. Debroy, T. Zacharia and S.A. David. The effects of variations in thermophisical proprerties in models on heat transfer and fluid flow is examined. Welding Research Supplement (1992) 313s-320s.
Google Scholar
[26]
Goldak, J., Chakvanati, A. and Birbby, M. (1986) A new finite element model for welding heat sources, Metallurgical Transaction B, Vol. 15b, p.299–305.
Google Scholar
[27]
Ferro, P., Zambon, A. and Bonollo, F. (2005b) Investigation of electron beam welding in wrought Inconel 706 – experimental and numerical analysis, Materials Science and Engineering A, Vol. 392, p.94–105.
DOI: 10.1016/j.msea.2004.10.039
Google Scholar
[28]
P. Ferro, A. Tiziani, 2012. Metallurgical and mechanical characterization of electron beam welded DP600 steel joints,. J. Mater. Sci. 47 (2011) pp.199-207. doi: 10. 1007/s10853-011-5787-y.
DOI: 10.1007/s10853-011-5787-y
Google Scholar
[29]
P. Ferro, F. Bonollo, A. Tiziani, 2010. Methodologies and experimental validations of welding process numerical simulation,. Int. J. Computational Materials Science and Surface Engineering, Vol. 3, Nos. 2/3, pp.114-132.
DOI: 10.1504/ijcmsse.2010.033148
Google Scholar
[30]
A. Zambon, P. Ferro and F. Bonollo, 2006. Microstructural, compositional and residual stress evaluation of CO2 laser welded superaustenitic AISI 904L stainless steel,. Materials Science and Engineering A, 424 (2006) pp.117-127.
DOI: 10.1016/j.msea.2006.03.003
Google Scholar
[31]
F. Bonollo, A. Tiziani, A. Zambon, Mater. Sci. Technol. 9 (1993) 1137–1144.
Google Scholar
[32]
F. Bonollo, A. Tiziani, S. Gobbi, L. Zhang, Proceedings of the Fourth European Conference on Advanced Materials and Processes, EUROMAT 95, AIM, Milan, Italy, 1995, p.561–564.
Google Scholar
[33]
A. Tiziani, A. Zambon, F. Bonollo, M. Cantello, in: S.K. Ghosh (Ed. ), Proceeding Conference Laser 5, London, IITT International—Gournay sur Marne, France, 1989, p.75–89.
Google Scholar
[34]
J.C. Lippold. Welding Metallurgy and Weldability, First Ed. © 2015 J. Wiley & Sons, Inc Published 2015 by J. Wiley & Sons, Inc.
Google Scholar
[35]
P. Sahoo, T. DebRoy and M. McNallan, 1988. Surface tension of binary metal – surface active solute system under conditions relevant to welding metallurgy,. Metallurgical Transactions B, 19 (1988) pp.483-491.
DOI: 10.1007/bf02657748
Google Scholar
[36]
S. Wang, R. Nates, T. Pasang, M. Ramezani, 2015. Modelling of gas tungsten arc welding pool under Marangoni convection,. Universal Journal of mechanical Engineering 3(5), 2015, pp.185-201.
DOI: 10.13189/ujme.2015.030504
Google Scholar
[37]
S. Kou and D.K. Sun, 1985. Fluid flow and weld penetration in stationary arc welds,. Metallurgical Transaction A, 16A(2), 1985, pp.203-213.
DOI: 10.1007/bf02815302
Google Scholar
[38]
A. Kumar and T. DebRoy, 2005. Tailoring complex weld geometry through reliable heat transfer and fluid flow calculations and a genetic algoithm,. Matallurgical and Materials Transactions A, 36A, 2005, pp.2725-2735.
DOI: 10.1007/s11661-005-0269-y
Google Scholar
[39]
H.G. Lee and J. Kim, 2012. A comparison study of the Boussinesq and the variable density models on buoyancy-driven flows,. Journal of Engineering Mathematics, 75(1), 2012, pp.15-27.
DOI: 10.1007/s10665-011-9504-2
Google Scholar
[40]
T.C. Choo and J. Szekely, 1991. The effect of gas shear stress on Marangoni flows in arc welding,. Welding Research Supplement, Septembre 1991, pp.223-233.
Google Scholar
[41]
S.P. Lu, W.C. Dong, D.Z. Li and Y.Y. Li, 2009. Numerical simulation for welding pool and welding arc with variable active element and welding parameters,. Science and Technology of Welding and Joining. 14(6) 2009 pp.509-516.
DOI: 10.1179/136217109x441182
Google Scholar