Molten Pool in Welding Processes: Phenomenological vs Fluid-Dynamic Numerical Simulation Approach

Article Preview

Abstract:

The metallurgical and mechanical properties of fusion welded joints are influenced, among others phenomena, by the weld pool dimension and shape. Weld pool shape is important in the development of grain structure and dendrite growth selection process as well as in the development of residual stresses. For these reasons, significant advances have been made in recent years to understand, in greater detail, the dynamics of the heat and fluid flow in the weld and the subsequent development of the pool shape. In numerical simulation of welding processes, there are two different approaches used to model the fusion zone. If the prediction of distortions and residual stresses is the primary objective of the simulation (computational weld mechanics simulation), the phenomenological approach is the most suitable method used to model the fusion zone. Otherwise, when the weld pool shape has to be predicted, the fluid-dynamic equations must be solved at the expense of a significant ‘computational load’ increase. In this work, after a brief description of weld pool characteristics, such two different approaches are described and compared.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

26-40

Citation:

Online since:

January 2017

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Gupt. K. M., Yavoisky, N. I., Vishkaryov, A. F. and Bliznakov, S. A. 1972/73 Met. Eng. Ind. Inst. Technol., Bombay 1972/73, 39-45.

Google Scholar

[2] Gupt. K. M., Yavoisky, N. I., Vishkaryov, A. F. and Bliznakov, S. A. 1976 Trans. Ind. Inst. Metals 29, 286-291.

Google Scholar

[3] Ishizaki, K. 1965 Interfacial tension theory of arc welding phenomena: formation of welding bead. J. Jao. Weld. Soc. 34, 146.

Google Scholar

[4] Heiple, C.A. and Roper, J. R. 1982 Mechanism for minor element effect on GTA fusion zone geometry. Welding J. 61 975s.

Google Scholar

[5] Oreper, G. M. and Szekely, J. 1984 Heat and fluid flow phenomena in weld pools. J. Fluid. Mech. 147, 55.

DOI: 10.1017/s0022112084001981

Google Scholar

[6] Kou, S and Sun, D. K. 1985 Fluid flow and weld penetration in stationary arc welds. Metall. Trans. A 16, 203.

DOI: 10.1007/bf02816047

Google Scholar

[7] Mill, K.C., Keene B. J., Brooks R. F. and Shirali A. 1998 Marangoni effects in welding. Phil. Trans. R. Soc. Lond. A , 356, 911-925.

Google Scholar

[8] Burgardt, P. and Heiple, C. A. 1986 Interaction between impurities and welding parameters in determining GTA weld shape. Welding J. 65, 150s-155s.

Google Scholar

[9] T. Zacharia, J.M. Vitek, J.A. Goldak, T.A. DebRoy, M. Rappaz, and H.K.D.H. Bhadeshia, Modeling of fundamental phenomena in welds, Modelling Simul. Mater. Sci. Eng. (1995), no. 3, 265–288.

DOI: 10.1088/0965-0393/3/2/009

Google Scholar

[10] G. J ̈onsson, J. Szekely, R.T.C. Choo, and T.P. Quinn, Mathematical models of transport phenomena associated with arc-welding processes, a survey, Modelling Simul. Mater. Sci. Eng. (1994), no. 2, 995–1016.

DOI: 10.1088/0965-0393/2/5/005

Google Scholar

[11] Y.P. Lei, Y.W. Shi, Numerical treatment of the boundary conditions and source terms on a spot welding process with combining buoyancy-Marangoni-driven flow, Numerical Heat Transfer 26B (1994) 455-471.

DOI: 10.1080/10407799408914940

Google Scholar

[12] A. Matunawa, S. Yokoya, Y. Asako, Convection in weld pool and its effect on penetration shape in stationary arc welds, Q. J. of Japan Welding Society 6 (1987) 3-10.

DOI: 10.2207/qjjws.6.455

Google Scholar

[13] T. Zacharia, S.A. David, J.M. Vitek, T. DebRoy, Weld pool development during GTA and laser beam welding of Type 304 stainless steel, part 1 - theoretical analysis, Welding Journal 68 (1989) 499s-509s.

Google Scholar

[14] K.C. Tsao, C.S. Wu, Fluid flow and heat transfer in GMA weld pools, Welding Journal 67 (1988) 70s-75s.

Google Scholar

[15] R.T.C. Choo, J. Szekely, S.A. David, On the calculation of the free surface temperature of gas-tungsten arc weld pools from ®rst principles: part 2. Modeling the weld pool and comparison with experiments, Metall. Trans. B 23B (1992) 371-384.

DOI: 10.1007/bf02656292

Google Scholar

[16] K.C. Hsu, K. Etemadi, E. Pfender, Study of the free-burning high-intensity argon arc, J. Appl. Phys. 54 (3) (1983) 1293–1299.

DOI: 10.1063/1.332195

Google Scholar

[17] M.C. Tsai, S. Kou, Heat transfer and fluid flow in welding arcs produced by sharpened and flat electrodes, Int. J. Heat Mass Transfer 33 (10) (1990) 2089–(2098).

DOI: 10.1016/0017-9310(90)90111-7

Google Scholar

[18] W. -H. Kim, H.G. Fan, S. -J. Na, A mathematical model of gas tungsten arc welding considering the cathode and the free surface of the weld pool, Metall. Mater. Trans. B 28 (1997) 679–686.

DOI: 10.1007/s11663-997-0042-2

Google Scholar

[19] J. -H. Lee, S. -J. Na, An analysis of volumetric radiation heat flux and experimental comparison with arc light sensing in GTA welding process, J. Mater. Process. Tech. 110 (2001) 104–110.

DOI: 10.1016/s0924-0136(00)00868-2

Google Scholar

[20] R.T.C. Choo, J. Szekely, R.C. Westhoff, On the calculation of the free surface temperature of gas-tungsten-arc weld pools from first principles: Part I. Modeling the welding arc, Metall. Trans. B 23 (1992) 357–369.

DOI: 10.1007/bf02656291

Google Scholar

[21] Y.M. Zhang, Z.N. Cao, et al., Numerical analysis of fully penetrated weld pools in gas tungsten arc welding, Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 210 (1996) 187–195.

DOI: 10.1243/pime_proc_1996_210_185_02

Google Scholar

[22] H.G. Fan, H.L. Tsai, S.J. Na, Heat transfer and fluid flow in a partially or fully penetrated weld pool in gas tungsten arc welding, Int. J. Heat Mass Transfer 44 (2001) 417–428.

DOI: 10.1016/s0017-9310(00)00094-6

Google Scholar

[23] F. Lu, S. Yao, S. Lou, Y. Li. Modeling and finite element analysis on GTAW arc and weld pool. Computational materials Science 29 (2004) 371-378.

DOI: 10.1016/j.commatsci.2003.10.009

Google Scholar

[24] F. Lu, X. Tang, H. Yu, S. Yao. Numerical simulation on interaction between TIG welding arc and weld pool. Computational materials Science 35 (2006) 458-465.

DOI: 10.1016/j.commatsci.2005.03.014

Google Scholar

[25] K. Mundra, T. Debroy, T. Zacharia and S.A. David. The effects of variations in thermophisical proprerties in models on heat transfer and fluid flow is examined. Welding Research Supplement (1992) 313s-320s.

Google Scholar

[26] Goldak, J., Chakvanati, A. and Birbby, M. (1986) A new finite element model for welding heat sources, Metallurgical Transaction B, Vol. 15b, p.299–305.

Google Scholar

[27] Ferro, P., Zambon, A. and Bonollo, F. (2005b) Investigation of electron beam welding in wrought Inconel 706 – experimental and numerical analysis, Materials Science and Engineering A, Vol. 392, p.94–105.

DOI: 10.1016/j.msea.2004.10.039

Google Scholar

[28] P. Ferro, A. Tiziani, 2012. Metallurgical and mechanical characterization of electron beam welded DP600 steel joints,. J. Mater. Sci. 47 (2011) pp.199-207. doi: 10. 1007/s10853-011-5787-y.

DOI: 10.1007/s10853-011-5787-y

Google Scholar

[29] P. Ferro, F. Bonollo, A. Tiziani, 2010. Methodologies and experimental validations of welding process numerical simulation,. Int. J. Computational Materials Science and Surface Engineering, Vol. 3, Nos. 2/3, pp.114-132.

DOI: 10.1504/ijcmsse.2010.033148

Google Scholar

[30] A. Zambon, P. Ferro and F. Bonollo, 2006. Microstructural, compositional and residual stress evaluation of CO2 laser welded superaustenitic AISI 904L stainless steel,. Materials Science and Engineering A, 424 (2006) pp.117-127.

DOI: 10.1016/j.msea.2006.03.003

Google Scholar

[31] F. Bonollo, A. Tiziani, A. Zambon, Mater. Sci. Technol. 9 (1993) 1137–1144.

Google Scholar

[32] F. Bonollo, A. Tiziani, S. Gobbi, L. Zhang, Proceedings of the Fourth European Conference on Advanced Materials and Processes, EUROMAT 95, AIM, Milan, Italy, 1995, p.561–564.

Google Scholar

[33] A. Tiziani, A. Zambon, F. Bonollo, M. Cantello, in: S.K. Ghosh (Ed. ), Proceeding Conference Laser 5, London, IITT International—Gournay sur Marne, France, 1989, p.75–89.

Google Scholar

[34] J.C. Lippold. Welding Metallurgy and Weldability, First Ed. © 2015 J. Wiley & Sons, Inc Published 2015 by J. Wiley & Sons, Inc.

Google Scholar

[35] P. Sahoo, T. DebRoy and M. McNallan, 1988. Surface tension of binary metal – surface active solute system under conditions relevant to welding metallurgy,. Metallurgical Transactions B, 19 (1988) pp.483-491.

DOI: 10.1007/bf02657748

Google Scholar

[36] S. Wang, R. Nates, T. Pasang, M. Ramezani, 2015. Modelling of gas tungsten arc welding pool under Marangoni convection,. Universal Journal of mechanical Engineering 3(5), 2015, pp.185-201.

DOI: 10.13189/ujme.2015.030504

Google Scholar

[37] S. Kou and D.K. Sun, 1985. Fluid flow and weld penetration in stationary arc welds,. Metallurgical Transaction A, 16A(2), 1985, pp.203-213.

DOI: 10.1007/bf02815302

Google Scholar

[38] A. Kumar and T. DebRoy, 2005. Tailoring complex weld geometry through reliable heat transfer and fluid flow calculations and a genetic algoithm,. Matallurgical and Materials Transactions A, 36A, 2005, pp.2725-2735.

DOI: 10.1007/s11661-005-0269-y

Google Scholar

[39] H.G. Lee and J. Kim, 2012. A comparison study of the Boussinesq and the variable density models on buoyancy-driven flows,. Journal of Engineering Mathematics, 75(1), 2012, pp.15-27.

DOI: 10.1007/s10665-011-9504-2

Google Scholar

[40] T.C. Choo and J. Szekely, 1991. The effect of gas shear stress on Marangoni flows in arc welding,. Welding Research Supplement, Septembre 1991, pp.223-233.

Google Scholar

[41] S.P. Lu, W.C. Dong, D.Z. Li and Y.Y. Li, 2009. Numerical simulation for welding pool and welding arc with variable active element and welding parameters,. Science and Technology of Welding and Joining. 14(6) 2009 pp.509-516.

DOI: 10.1179/136217109x441182

Google Scholar