The Influence of Cooling Rate on Microstructure, Tensile and Fatigue Behavior of Heat-Treated Al-Si-Cu-Mg Alloys

Article Preview

Abstract:

Al-Si-Mg alloys are commonly employed for the production of automotive castings. In view of the recent stringent emissions standards and consequent engine downsizing, these components must withstand higher temperatures and stresses than in the past. In this regard, the heat treatable quaternary Al-Si-Cu-Mg alloys gained particular interest in recent years, due to their superior mechanical properties and higher thermal stability. The present research activity was addressed to evaluate the influence of cooling rate on microstructure and consequently on room temperature tensile and fatigue behaviour of the A354 and C355 alloys. Samples for mechanical tests were produced under controlled cooling rates, in order to induce different secondary dendrite arm spacing (SDAS) values, classified as fine (20-25μm) and coarse (50-70μm). The experimental results showed that the cooling rate strongly influences the type, size and morphology of intermetallic particles. The presence of coarse intermetallic phases, mostly Fe-based, observed in coarse SDAS specimens, was reported to strongly affect ultimate tensile strength (UTS), elongation to failure and fatigue strength of both the investigated alloys. A correlation between UTS and fatigue resistance was found, independent of microstructural coarseness.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

81-92

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.R. Farkoosh, M. Javidani, M. Hosein, D. Larouch, M. Pekguleryuz, Phase formation in as-solidified and heat-treated Al–Si–Cu–Mg–Ni alloys: Thermodynamic assessment and experimental investigation for alloy design, J Alloys Compd. 551 (2013).

DOI: 10.1016/j.jallcom.2012.10.182

Google Scholar

[2] A.R. Farkoosh, M. Pekguleryuz, Enhanced mechanical properties of an Al–Si–Cu–Mg alloy at 300°C: Effects of Mg and the Q-precipitate phase, Mater Sci Eng A. 621 (2015) 277-286.

DOI: 10.1016/j.msea.2014.10.080

Google Scholar

[3] A.R. Farkoosh A, X. Chen, M. Pekguleryuz, The effects of Mg, Mo and Cr on the microstructure and elevated temperature mechanical properties of an Al-Si-Cu-Mg alloy, Mater Sci Technol. 2 (2013) 1220–1227.

Google Scholar

[4] Q.G. Wang, D. Apelian, D.A. Lados, Fatigue behavior of A356/357 aluminum cast alloys. Part II - Effect of microstructural constituents, J Light Met. 1 (2001) 85–97.

DOI: 10.1016/s1471-5317(00)00009-2

Google Scholar

[5] Q.G. Wang, D. Apelian, D.A. Lados, Fatigue behavior of A356-T6 aluminum cast alloys. Part I - Effect of casting defects, J Light Met. 1 (2001) 73-84.

DOI: 10.1016/s1471-5317(00)00008-0

Google Scholar

[6] L. Ceschini, I. Boromei, A. Morri, S. Seifeddine, I.L. Svensson, Effect of Fe content and microstructural features on the tensile and fatigue properties of the Al–Si10–Cu2 alloy, Mater Des. 36 (2012) 522–528.

DOI: 10.1016/j.matdes.2011.11.047

Google Scholar

[7] L. Ceschini, A. Morri, A. Morri, S. Toschi, S. Johansson, S. Seifeddine, Effect of microstructure and overaging on the tensile behavior at room and elevated temperature of C355-T6 cast aluminum alloy, Mater Des. 83 (2015) 626–634.

DOI: 10.1016/j.matdes.2015.06.031

Google Scholar

[8] L. Ceschini, A. Morri, S. Toschi, S. Johansson, S. Seifeddine, Microstructural and mechanical properties characterization of heat treated and overaged cast A354 alloy with various SDAS at room and elevated temperature, Mater Sci Eng A. 648 (2015).

DOI: 10.1016/j.msea.2015.09.072

Google Scholar

[9] L. Ceschini, A. Morri A, S. Toschi, Seifeddine S, Room and high temperature fatigue behaviour of the A354 and C355 (Al–Si–Cu–Mg) alloys: Role of microstructure and heat treatment, Mater Sci Eng A. 653 (2016) 129–138.

DOI: 10.1016/j.msea.2015.12.015

Google Scholar

[10] S. Seifeddine, Characteristics of cast aluminium–silicon alloys: microstructures and mechanical properties. Linköping studies in science and technology: Dissertations, (2006).

Google Scholar

[11] ASTM E3-01 Standard practice for preparation of metallographic specimens. ASM International (2007).

Google Scholar

[12] ASTM ASTM E112-13 Standard Test Methods for Determining Average Grain Size. ASM International (2013).

Google Scholar

[13] A. Rodríguez, R. Torres, J. Talamantes-Silva, E. Velasco, S. Valtierra, R. Colás, Metallographic study of a cast Al–Si–Cu alloy by means of a novel etchant, Mater Charact. 68 (2012) 110–116.

DOI: 10.1016/j.matchar.2012.03.012

Google Scholar

[14] ASTM E 10-08 Standard test method for Brinell hardness of metallic materials. ASM International (2007).

Google Scholar

[15] ISO 6892-1: 2009 Metallic materials - Tensile testing - Part 1: Method of test at room temperature (2009).

Google Scholar

[16] ISO 6892-2: 2011, Metallic materials - Tensile testing - Part 2: Method of test at elevated temperature (2011).

Google Scholar

[17] UNI 3964 – 85, Mechanical Testing of Metallic Materials Fatigue Testing at Room Temperature (1985).

Google Scholar

[18] Y. Birol Y, Effect of silicon content in grain refining hypoeutectic Al–Si foundry alloys with boron and titanium additions, Mater Sci Technol. 28 (2012) 385–389.

DOI: 10.1179/1743284711y.0000000049

Google Scholar

[19] J.A. Spittle, Grain refinement in shape casting of aluminium alloys, Int J Cast Met Res. 19 (2006) 210–222.

DOI: 10.1179/136404606225023444

Google Scholar

[20] Y.C. Lee, A.K. Dahle, D.H. Stjohn, J.E.C. Hutt, The effect of grain refinement and silicon content on grain formation in hypoeutectic Al – Si alloys, Mat Sci Eng A. 259 (1999) 43–52.

DOI: 10.1016/s0921-5093(98)00884-3

Google Scholar

[21] L. Ceschini L, I. Boromei, A. Morri, S. Seifeddine, I.L. Svensson, Microstructure, tensile and fatigue properties of the Al–10%Si–2%Cu alloy with different Fe and Mn content cast under controlled conditions, J Mater Process Technol. 209 (2009).

DOI: 10.1016/j.jmatprotec.2009.05.030

Google Scholar

[22] Q.G. Wang, Microstructural Effects on the Tensile and Fracture Behavior of Aluminum Casting Alloys A356/357, Metall Mater Trans A. 34 (2003) 2887–2899.

DOI: 10.1007/s11661-003-0189-7

Google Scholar

[23] E. Sjölander, S. Seifeddine, Optimization of Solution Treatment of Cast Al-7Si-0. 3Mg and Al-8Si-3Cu-0. 5Mg Alloys, Metall Mater Trans A. 45-4 (2014) 1916-(1927).

DOI: 10.1007/s11661-013-2141-9

Google Scholar

[24] S. Seifeddine, S. Johansson, I.L. Svensson, The influence of cooling rate and manganese content on the β-Al5FeSi phase formation and mechanical properties of Al–Si-based alloys, Mater Sci Eng A. 490 (2008) 385–390.

DOI: 10.1016/j.msea.2008.01.056

Google Scholar

[25] L. Ceschini, A. Morri, A. Morri, G. Pivetti, Predictive equations of the tensile properties based on alloy hardness and microstructure for an A356 gravity die cast cylinder head, Mater Des. 32 (2011) 1367–1375.

DOI: 10.1016/j.matdes.2010.09.014

Google Scholar

[26] P. Rometsch, G. Schaffer, An age hardening model for Al–7Si–Mg casting alloys, Mater Sci Eng A. 325 (2002) 424–434.

DOI: 10.1016/s0921-5093(01)01479-4

Google Scholar

[27] A.M. Samuel, F.H. Samuel, A metallographic study of porosity and fracture behavior in relation to the tensile properties in 319. 2 end chill castings, Metall Mater Trans A. 26 (1995) 2359–2372.

DOI: 10.1007/bf02671250

Google Scholar

[28] M. Tiryakioglu, J. Campbell, J. Staley, The influence of structural integrity on the tensile deformation of cast Al–7wt. %Si–0. 6wt. %Mg alloys, Scr Mater. 49 (2003) 873–878.

DOI: 10.1016/s1359-6462(03)00439-1

Google Scholar

[29] Z. Li, Q. Wang, A.A. Luo, P. Fu, L. Peng, Fatigue strength dependence on the ultimate tensile strength and hardness in magnesium alloys, Int J Fatigue. 80 (2015) 468–76.

DOI: 10.1016/j.ijfatigue.2015.07.001

Google Scholar

[30] D.L. Shu, The mechanical properties of engineering materials. Beijing: China machine Press (2007).

Google Scholar