Effect of Superheat and Oxide Inclusions on the Fluidity of A356 Alloy

Article Preview

Abstract:

The effect of melt superheat and oxide inclusions on the fluidity of a commercial A356 alloy has been investigated. Fluidity measurements have been performed by means of Archimedean spiral in sand moulds. The specific testing method and the experimental apparatus show a good reproducibility. Metallographic and image analysis techniques have been used to quantitatively examine the microstructural changes and the amount of defects occurring at the tip of the spirals. The results reveal that oxide films increase the variability in the fluidity results obtained at the same apparent experimental conditions. A long permanence in the holding furnace and the introduction of some turbulence during sampling increase the oxide formation and entrapment in the molten bath, thus decreasing the repeatability of the fluidity results. The fluidity increases linearly with superheat and it extrapolates to zero at the temperature corresponding to a fraction solid of about 23%. The initial Ti content in the alloy produces an independent crystallization during freezing of the fluidity spirals.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

71-80

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Caliari, G. Timelli, F. Bonollo, P. Amalberto, P. Giordano, Fluidity of aluminium foundry alloys: development of a testing procedure, Metall. Ital. 107 (2015) 11-18.

Google Scholar

[2] M. Çolak, R. Kayikci, D. Dispinar, Fluidity characteristics of A356 alloy with various thickness sectioned new test mould, in: M. Tiryaltioğlu, J. Campbell, G. Byczynski (Eds. ), Shape Casting: 5th International Symposium 2014, TMS 2014, Wiley, 2014, pp.105-112.

DOI: 10.1002/9781118888100.ch13

Google Scholar

[3] M. Di Sabatino, F. Syvertsen, L. Arnberg, A. Nordmark, An improved method for fluidity measurement by gravity casting of spirals in sand moulds, Int. J. Cast Metals Res. 18 (2005) 59-62.

DOI: 10.1179/136404605225022865

Google Scholar

[4] M. Di Sabatino, L. Arnberg, S. Brusethaug, D. Apelian, Fluidity evaluation methods for Al-Mg-Si alloys, Int. J. Cast Metals Res. 19 (2006) 94-97.

DOI: 10.1179/136404606225023345

Google Scholar

[5] H. Kaufmann, W. Fragner, P. J. Uggowitzer, Influence of variations in alloy composition on castability and process stability. Part 1: Gravity and pressure casting processes, Int. J. Cast Metals Res. 18 (2005) 273-278.

DOI: 10.1179/136404605225023054

Google Scholar

[6] Young-Dong Kwon, Zin-Hyoung Lee, The effect of grain refining and oxide inclusion on the fluidity of Al-4. 5Cu-0. 6Mn and A356 alloys, Mater. Sci. Eng. A 360 (2003) 372-376.

DOI: 10.1016/s0921-5093(03)00504-5

Google Scholar

[7] G. Timelli, F. Bonollo, Fluidity of aluminium die castings alloy, Int. J. Cast Met. Res. 20 (2007) 304-311.

DOI: 10.1179/136404608x286110

Google Scholar

[8] M.C. Flemings, Solidification processing, first ed., McGraw-Hill, London, (1974).

Google Scholar

[9] M. Di Sabatino, L. Arnberg, S. Rørvik, A. Prestmo, The influence of oxide inclusions on the fluidity of Al-7 wt. %Si alloy, Mater. Sci. Eng. A 413-414 (2005) 272-276.

DOI: 10.1016/j.msea.2005.08.175

Google Scholar

[10] J. Campbell, Complete Casting Handbook - Metal Casting Processes, Metallurgy, Techniques and Design, first ed., Butterworth-Heinemann, Oxford, (2011).

Google Scholar

[11] M. Tiryakioglu, D.R. Askeland, C.W. Ramsay, The fluidity of 319 and A356: an experimental design approach, AFS Trans. 102 (1994) 17-25.

Google Scholar

[12] G.L. Squires, Practical physics, fourth ed., Cambridge Univ. Press, Cambridge, (2001).

Google Scholar

[13] D. Dispinar, J. Campbell, Critical assessment of reduced pressure test. Part 2: Quantification, Int. J. Cast Metals Res. 17 (2004) 287-294.

DOI: 10.1179/136404604225020704

Google Scholar

[14] D.J. Lloyd, The solidification microstructure of particulate reinforced Al-SiC composites, Comp. Sci. Technol. 35 (1989) 159-179.

DOI: 10.1016/0266-3538(89)90093-6

Google Scholar

[15] L. Bäckerud, G. Chai, J. Tamminen, Solidification Characteristics of Aluminum Alloys, Vol. 2: Foundry Alloys, first ed., AFS Inc., Des Plaines, IL, (1990).

Google Scholar

[16] M.B. Djurdjevic, Z. Odanovic, N. Talijan, Characterization of the solidification path of AlSi5Cu(1-4 wt. %) alloys using cooling curve analysis, JOM 63 (2011) 51-57.

DOI: 10.1007/s11837-011-0191-2

Google Scholar

[17] Z. Guo, N. Saunders, J.P. Schillé, A.P. Miodownik, Material properties for process simulation, Mater. Sci. Eng. A 499 (2009) 7-13.

Google Scholar

[18] G. Timelli, G. Camicia, S. Ferraro, Effect of grain refinement and cooling rate on the microstructure and mechanical properties of secondary Al-Si-Cu alloys, J. Mater. Eng. Perform. 23 (2014) 611-621.

DOI: 10.1007/s11665-013-0757-y

Google Scholar

[19] P.R. Beeley, Foundry Technology, second ed., Butterworth-Heinemann, Oxford, (2001).

Google Scholar

[20] L. Arnberg, L. Bäckerud, G. Chai, Solidification Characteristics of Aluminum Alloys, Vol. 3: Dendrite Coherency, first ed., AFS, Des Plaines, IL, (1996).

Google Scholar