Physical Phenomena Leading to Melting of Metals

Article Preview

Abstract:

Precursor phenomena of melting in pure metals and alloys have been investigated by means of Mechanical Spectroscopy (MS) and High Temperature X-ray Diffraction (HT-XRD). The examined materials were the pure metals In, Sn, Pb and Bi, and some alloys of the systems In-Sn and Pb-Bi with different compositions.MS tests have been carried out by means of a novel method developed by us that permits to operate in resonance conditions and employs hollow reeds of stainless steel containing the liquid metal. In all the metals a sharp drop of dynamic modulus and a Q-1 maximum were observed in a temperature range ΔT before melting that depends on the specific metal and its structure. Such anelastic behaviour is consistent with an increase of the interstitialcies concentration as predicted by the Granato’s theory.Moreover, HT-XRD evidenced that sudden grain re-orientation, shift and broadening of diffraction peaks occur just before the formation of the first liquid, therefore self-interstitials and vacancies seem to play a synergic role in melting. The increase of self-interstitials over ΔT has the effect of weakening interatomic bonds that favours the successive vacancy avalanche leading to the collapse of crystal lattice (melting).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-17

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.R. Ubbelohde, The Molten State of Matter-Melting and Crystal Structure, Wiley Intersciencepublication, New York, (1979).

Google Scholar

[2] F. Lindemann, Uber die Berechnung molekularer Eigenfrequenzen, Phys. Z., 11 (1910) 609-612.

Google Scholar

[3] M. Born, Thermodynamics of Crystals and Melting , J. of Chem. Phys., 7 (1939) 591-603.

Google Scholar

[4] L. Hunter, S. Siegel, The Variation with Temperature of the Principal Elastic Moduli of NaCl near the Melting Point, Phys. Rev., 61 (1942) 84-95.

DOI: 10.1103/physrev.61.84

Google Scholar

[5] J.L. Tallon, The volume dependence of elastic moduli and the Born-Durand melting hypothesis, Phil. Mag. A, 39 (1978) 151-161.

DOI: 10.1080/01418617908236889

Google Scholar

[6] T. Gorecki, Vacancies and changes of physical properties of metals at the melting point, Z. Metall., 65 (1974) 426-431.

Google Scholar

[7] D. Kuhlmann-Wilsdorf, Theory of melting, Phys. Rev., 140 (1965) A1599-A1610.

DOI: 10.1103/physrev.140.a1599

Google Scholar

[8] T.A. Weber, F.H. Stillinger, Inherent structures and distribution functions for liquids that freeze into bcc crystals, J. of Chem. Phys., 81 (1984) 5089-5094.

DOI: 10.1063/1.447498

Google Scholar

[9] A.V. Granato, Interstitialcy model for condensed matter states of face-centered-cubic metals, Phys. Rev. Lett., 68 (1992) 974-977.

DOI: 10.1103/physrevlett.68.974

Google Scholar

[10] Z.H. Jin, P. Gumbsch, K. Lu, E. Ma, Melting Mechanisms at the Limit of Superheating, Phys. Rev. Lett., 87 (2001) 55703-1/55703-4.

DOI: 10.1103/physrevlett.87.055703

Google Scholar

[11] L. Gomez, A. Dobry, H.T. Diep, Monte Carlo simulation of the role of defects as a melting mechanism, Phys. Rev. B, 63 (2001) 224103-1/224103-6.

DOI: 10.1103/physrevb.63.224103

Google Scholar

[12] L. Gomez, A. Dobry, Ch. Geuting H.T. Diep, L. Burakovsky, Dislocation Lines as the Precursor of the Melting of Crystalline Solids Observed in Monte Carlo Simulations, Phys. Rev. Lett., 90 (2003) 95701-1/ 95701-4.

DOI: 10.1103/physrevlett.90.095701

Google Scholar

[13] J.F. Lutsko, D. Wolf, S.R. Phillipot, S. Yip, Molecular-dynamics study of lattice-defect-nucleated melting in metals using an embedded-atom-method potential, Phys. Rev. B, 40 (1989) 2841-2855.

DOI: 10.1103/physrevb.40.2841

Google Scholar

[14] T. Sinno, Z.K. Jiang, R.A. Brown, Atomistic Simulation of High-Temperature Point Defect Properties in Crystalline Silicon , Applied Physics Letters, 68 (1996) 3028-3031.

DOI: 10.1063/1.115566

Google Scholar

[15] Z.G. Zhu, F.Q. Zu, L.J. Guo, B. Zhang, Internal friction method: suitable also for structural changes of liquids, Mater. Sci. Eng. A, 370 (2004) 427-430.

DOI: 10.1016/j.msea.2003.07.021

Google Scholar

[16] P. Deodati, F. Gauzzi, R. Montanari, A. Varone, Structural Changes of Liquid Pb-Bi Eutectic Alloy, Mater. Sci. Forum, 706-709 (2012) 878-883.

DOI: 10.4028/www.scientific.net/msf.706-709.878

Google Scholar

[17] R. Montanari, A. Varone, Mechanical Spectroscopy Investigation of Liquid Pb-Bi Alloys, Solid State Phenomena, 184 (2012) 434-439.

DOI: 10.4028/www.scientific.net/ssp.184.434

Google Scholar

[18] R. MONTANARI, A. VARONE, SYNERGIC ROLE OF SELF-INTERSTITIALS AND VACANCIES IN INDIUM MELTING, METALS 5 (2015) 1061-1072; WWW. MDPI. COM/JOURNAL/METALS.

DOI: 10.3390/met5021061

Google Scholar

[19] S. Amadori, E.G. Campari, A.L. Fiorini, R. Montanari, L. Pasquini, L. Savini, E. Bonetti, Automated resonant vibrating reed analyzer apparatus for a non destructive characterization of materials for industrial applications, Mater. Sci. Eng. A, 442 (2006).

DOI: 10.1016/j.msea.2006.02.210

Google Scholar

[20] R. Montanari, G. Costanza, M.E. Tata, C. Testani, Lattice expansion of Ti-6Al-4V by nitrogen and oxygen absorption, Materials Characterization, 59 (2008) 334-337.

DOI: 10.1016/j.matchar.2006.12.014

Google Scholar

[21] B.D. Cullity, Elements of X-ray Diffraction, 2nd Edition, Addison & Wesley Publishing Company Inc., Reading (USA), (1978) p.356.

Google Scholar

[22] C.A. Gordon, A.V. Granato, Equilibrium concentration of interstitials in aluminium just below the melting temperature, Mater. Sci. Eng. A 370 (2004) 83-87.

DOI: 10.1016/j.msea.2003.08.077

Google Scholar

[23] R.W. Siegel, Vacancy concentrations in metals , J. Nucl. Mater., 69-70 (1978) 117-146.

Google Scholar

[24] A. Kanigel, J. Adler, E. Polturak, Influence of point defects on the shear elastic coefficients and on the melting temperature of copper, Int. J. Mod. Phys. C, 12 (2001) 727-737.

DOI: 10.1142/s0129183101001900

Google Scholar

[25] K. Nordlund, R.S. Averback, Role of Self-Interstitial Atoms on the High Temperature Properties of Metals, Phys. Rev. Lett., 80 (1998) 4201-4204.

DOI: 10.1103/physrevlett.80.4201

Google Scholar

[26] M. Forsblom, G. Grimvall, How superheated crystals melt, Nature Mater., 4 (2005) 388-390.

DOI: 10.1038/nmat1375

Google Scholar

[27] C.A. Gordon, A.V. Granato, Equilibrium concentration of interstitials in aluminum just below the melting temperature, Mat. Sci. Eng. A, 370 (2004) 83-87.

DOI: 10.1016/j.msea.2003.08.077

Google Scholar

[28] K.H. Robrock, W. Schilling, Diaelastic modulus change of aluminium after low-temperature electron-irradiation , J. Phys. F-Metal Phys., 6 (1976) 303-314.

DOI: 10.1088/0305-4608/6/3/007

Google Scholar

[29] S.V. Nemilov, Interrelation between shear modulus and the molecular parameters of viscous flow for glass forming liquids, J. Non-Cryst Solids, 352 (2006) 2715-2725.

DOI: 10.1016/j.jnoncrysol.2006.04.001

Google Scholar

[30] G. Knuyt, L. De Schepper, L.M. Stals, Calculation of some metallic glass properties, based on the use of a Gaussian distribution for the nearest-neighbour distance, Phil. Mag. B, 61 (1990) 965-988.

DOI: 10.1080/13642819008207856

Google Scholar

[31] J. Graham, A. Moore, G.V. Raynor, The effect of temperature on the lattice spacings of indium, J. Inst. of Metals, 84 (1955) 86-87.

Google Scholar

[32] J.E. Dickman, R.N. Jeffrey, D.R. Gustafson, Vacancy formation volume in indium from positron-annihilation measurements, Phys. Rev. B, 16 (1977) 3334-3337.

DOI: 10.1103/physrevb.16.3334

Google Scholar

[33] W. Weiler, H.E. Schaefer, Vacancy formation in indium investigated by positron lifetime spectroscopy, J. Phys. F, 15 (1985) 1651-1659.

DOI: 10.1088/0305-4608/15/8/005

Google Scholar

[34] P. Ehrhart, P. Jung, H. Schultz, H. Ullmaier, Atomic Defects in Metals, Landoldt-Bornstein, ed. Madelung Group III, Volume 25, Berlin, (1991).

Google Scholar

[35] F.J. Humphreys, M. Hatherly, Recrystallization and related Annealing Phenomena, Pergamon Press, Oxford, (1996).

Google Scholar

[36] F. Haessner, S. Hofman, Recrystallization of Metallic Materials, Ed. Haessner, DR Riederer Verlag, Stuttgart, (1978).

Google Scholar

[37] R.W. Cahn, Physical Metallurgy, Eds. R.W. Cahn & P. Haasen, Elsevier Science Publishers 3rd Edition (1983), p.1595.

Google Scholar

[38] H. Gleiter and B. Chalmers, Prog. Mater. Sci. 16 (1972) 1.

Google Scholar

[39] P.H. Dederichs, Diffuse Scattering from Defect Clusters near Bragg Reflections, Phys. Rev. B, 4 (1971) 1041-1050.

DOI: 10.1103/physrevb.4.1041

Google Scholar

[40] E. Bonetti, E. Fuschini, R. Montanari, M. Servidori, A. Uguzzoni, X-ray diffraction study on proton-irradiated high-purity aluminum, Mater. Letters, 8 (1989) 477-480.

DOI: 10.1016/0167-577x(89)90035-9

Google Scholar

[41] M.A. Krivoglaz and K.P. Ryaboshapka, Phis. Met. Metallogr. USSR, 16 (1963) 14-20.

Google Scholar

[42] A. Mezzi, S. Kaciulis, S.K. Balijepalli, R. Montanari, A. Varone, M. Amati, B. Aleman Llorente, Micro-chemical inhomogeneity in eutectic Pb-Bi alloy quenched from melt, Surf. and Interf. Anal., Published online in Wiley Online Library (wileyonlinelibrary. com) DOI 10. 1002/sia. 5368; Surf. Interface Anal. 46 (2014).

DOI: 10.1002/sia.5368

Google Scholar

[43] S. Balijepalli, S. Kaciulis, M. Amati, R. Montanari, A. Varone, Elemental clustering and structure of liquid LBE, Advanced Materials Research Vol. 922 (2014) 785-790.

DOI: 10.4028/www.scientific.net/amr.922.785

Google Scholar

[44] R. Montanari, A. Varone, Ordine a breve raggio nel fuso della lega eutettica Pb-Bi, La Metallurgia Italiana, 3 (2015) 3-8.

Google Scholar

[45] R. Montanari, F. Gauzzi, XRD investigation of binary alloys solidification, Ed. S.S. Sadhal, Annals of the New York Academy of Sciences, 1161 (2009) 407-415.

DOI: 10.1111/j.1749-6632.2008.04317.x

Google Scholar

[46] T.B. Massalski, Binary Alloy Phase Diagram, American Society for Metals (1987).

Google Scholar