[1]
A.R. Ubbelohde, The Molten State of Matter-Melting and Crystal Structure, Wiley Intersciencepublication, New York, (1979).
Google Scholar
[2]
F. Lindemann, Uber die Berechnung molekularer Eigenfrequenzen, Phys. Z., 11 (1910) 609-612.
Google Scholar
[3]
M. Born, Thermodynamics of Crystals and Melting , J. of Chem. Phys., 7 (1939) 591-603.
Google Scholar
[4]
L. Hunter, S. Siegel, The Variation with Temperature of the Principal Elastic Moduli of NaCl near the Melting Point, Phys. Rev., 61 (1942) 84-95.
DOI: 10.1103/physrev.61.84
Google Scholar
[5]
J.L. Tallon, The volume dependence of elastic moduli and the Born-Durand melting hypothesis, Phil. Mag. A, 39 (1978) 151-161.
DOI: 10.1080/01418617908236889
Google Scholar
[6]
T. Gorecki, Vacancies and changes of physical properties of metals at the melting point, Z. Metall., 65 (1974) 426-431.
Google Scholar
[7]
D. Kuhlmann-Wilsdorf, Theory of melting, Phys. Rev., 140 (1965) A1599-A1610.
DOI: 10.1103/physrev.140.a1599
Google Scholar
[8]
T.A. Weber, F.H. Stillinger, Inherent structures and distribution functions for liquids that freeze into bcc crystals, J. of Chem. Phys., 81 (1984) 5089-5094.
DOI: 10.1063/1.447498
Google Scholar
[9]
A.V. Granato, Interstitialcy model for condensed matter states of face-centered-cubic metals, Phys. Rev. Lett., 68 (1992) 974-977.
DOI: 10.1103/physrevlett.68.974
Google Scholar
[10]
Z.H. Jin, P. Gumbsch, K. Lu, E. Ma, Melting Mechanisms at the Limit of Superheating, Phys. Rev. Lett., 87 (2001) 55703-1/55703-4.
DOI: 10.1103/physrevlett.87.055703
Google Scholar
[11]
L. Gomez, A. Dobry, H.T. Diep, Monte Carlo simulation of the role of defects as a melting mechanism, Phys. Rev. B, 63 (2001) 224103-1/224103-6.
DOI: 10.1103/physrevb.63.224103
Google Scholar
[12]
L. Gomez, A. Dobry, Ch. Geuting H.T. Diep, L. Burakovsky, Dislocation Lines as the Precursor of the Melting of Crystalline Solids Observed in Monte Carlo Simulations, Phys. Rev. Lett., 90 (2003) 95701-1/ 95701-4.
DOI: 10.1103/physrevlett.90.095701
Google Scholar
[13]
J.F. Lutsko, D. Wolf, S.R. Phillipot, S. Yip, Molecular-dynamics study of lattice-defect-nucleated melting in metals using an embedded-atom-method potential, Phys. Rev. B, 40 (1989) 2841-2855.
DOI: 10.1103/physrevb.40.2841
Google Scholar
[14]
T. Sinno, Z.K. Jiang, R.A. Brown, Atomistic Simulation of High-Temperature Point Defect Properties in Crystalline Silicon , Applied Physics Letters, 68 (1996) 3028-3031.
DOI: 10.1063/1.115566
Google Scholar
[15]
Z.G. Zhu, F.Q. Zu, L.J. Guo, B. Zhang, Internal friction method: suitable also for structural changes of liquids, Mater. Sci. Eng. A, 370 (2004) 427-430.
DOI: 10.1016/j.msea.2003.07.021
Google Scholar
[16]
P. Deodati, F. Gauzzi, R. Montanari, A. Varone, Structural Changes of Liquid Pb-Bi Eutectic Alloy, Mater. Sci. Forum, 706-709 (2012) 878-883.
DOI: 10.4028/www.scientific.net/msf.706-709.878
Google Scholar
[17]
R. Montanari, A. Varone, Mechanical Spectroscopy Investigation of Liquid Pb-Bi Alloys, Solid State Phenomena, 184 (2012) 434-439.
DOI: 10.4028/www.scientific.net/ssp.184.434
Google Scholar
[18]
R. MONTANARI, A. VARONE, SYNERGIC ROLE OF SELF-INTERSTITIALS AND VACANCIES IN INDIUM MELTING, METALS 5 (2015) 1061-1072; WWW. MDPI. COM/JOURNAL/METALS.
DOI: 10.3390/met5021061
Google Scholar
[19]
S. Amadori, E.G. Campari, A.L. Fiorini, R. Montanari, L. Pasquini, L. Savini, E. Bonetti, Automated resonant vibrating reed analyzer apparatus for a non destructive characterization of materials for industrial applications, Mater. Sci. Eng. A, 442 (2006).
DOI: 10.1016/j.msea.2006.02.210
Google Scholar
[20]
R. Montanari, G. Costanza, M.E. Tata, C. Testani, Lattice expansion of Ti-6Al-4V by nitrogen and oxygen absorption, Materials Characterization, 59 (2008) 334-337.
DOI: 10.1016/j.matchar.2006.12.014
Google Scholar
[21]
B.D. Cullity, Elements of X-ray Diffraction, 2nd Edition, Addison & Wesley Publishing Company Inc., Reading (USA), (1978) p.356.
Google Scholar
[22]
C.A. Gordon, A.V. Granato, Equilibrium concentration of interstitials in aluminium just below the melting temperature, Mater. Sci. Eng. A 370 (2004) 83-87.
DOI: 10.1016/j.msea.2003.08.077
Google Scholar
[23]
R.W. Siegel, Vacancy concentrations in metals , J. Nucl. Mater., 69-70 (1978) 117-146.
Google Scholar
[24]
A. Kanigel, J. Adler, E. Polturak, Influence of point defects on the shear elastic coefficients and on the melting temperature of copper, Int. J. Mod. Phys. C, 12 (2001) 727-737.
DOI: 10.1142/s0129183101001900
Google Scholar
[25]
K. Nordlund, R.S. Averback, Role of Self-Interstitial Atoms on the High Temperature Properties of Metals, Phys. Rev. Lett., 80 (1998) 4201-4204.
DOI: 10.1103/physrevlett.80.4201
Google Scholar
[26]
M. Forsblom, G. Grimvall, How superheated crystals melt, Nature Mater., 4 (2005) 388-390.
DOI: 10.1038/nmat1375
Google Scholar
[27]
C.A. Gordon, A.V. Granato, Equilibrium concentration of interstitials in aluminum just below the melting temperature, Mat. Sci. Eng. A, 370 (2004) 83-87.
DOI: 10.1016/j.msea.2003.08.077
Google Scholar
[28]
K.H. Robrock, W. Schilling, Diaelastic modulus change of aluminium after low-temperature electron-irradiation , J. Phys. F-Metal Phys., 6 (1976) 303-314.
DOI: 10.1088/0305-4608/6/3/007
Google Scholar
[29]
S.V. Nemilov, Interrelation between shear modulus and the molecular parameters of viscous flow for glass forming liquids, J. Non-Cryst Solids, 352 (2006) 2715-2725.
DOI: 10.1016/j.jnoncrysol.2006.04.001
Google Scholar
[30]
G. Knuyt, L. De Schepper, L.M. Stals, Calculation of some metallic glass properties, based on the use of a Gaussian distribution for the nearest-neighbour distance, Phil. Mag. B, 61 (1990) 965-988.
DOI: 10.1080/13642819008207856
Google Scholar
[31]
J. Graham, A. Moore, G.V. Raynor, The effect of temperature on the lattice spacings of indium, J. Inst. of Metals, 84 (1955) 86-87.
Google Scholar
[32]
J.E. Dickman, R.N. Jeffrey, D.R. Gustafson, Vacancy formation volume in indium from positron-annihilation measurements, Phys. Rev. B, 16 (1977) 3334-3337.
DOI: 10.1103/physrevb.16.3334
Google Scholar
[33]
W. Weiler, H.E. Schaefer, Vacancy formation in indium investigated by positron lifetime spectroscopy, J. Phys. F, 15 (1985) 1651-1659.
DOI: 10.1088/0305-4608/15/8/005
Google Scholar
[34]
P. Ehrhart, P. Jung, H. Schultz, H. Ullmaier, Atomic Defects in Metals, Landoldt-Bornstein, ed. Madelung Group III, Volume 25, Berlin, (1991).
Google Scholar
[35]
F.J. Humphreys, M. Hatherly, Recrystallization and related Annealing Phenomena, Pergamon Press, Oxford, (1996).
Google Scholar
[36]
F. Haessner, S. Hofman, Recrystallization of Metallic Materials, Ed. Haessner, DR Riederer Verlag, Stuttgart, (1978).
Google Scholar
[37]
R.W. Cahn, Physical Metallurgy, Eds. R.W. Cahn & P. Haasen, Elsevier Science Publishers 3rd Edition (1983), p.1595.
Google Scholar
[38]
H. Gleiter and B. Chalmers, Prog. Mater. Sci. 16 (1972) 1.
Google Scholar
[39]
P.H. Dederichs, Diffuse Scattering from Defect Clusters near Bragg Reflections, Phys. Rev. B, 4 (1971) 1041-1050.
DOI: 10.1103/physrevb.4.1041
Google Scholar
[40]
E. Bonetti, E. Fuschini, R. Montanari, M. Servidori, A. Uguzzoni, X-ray diffraction study on proton-irradiated high-purity aluminum, Mater. Letters, 8 (1989) 477-480.
DOI: 10.1016/0167-577x(89)90035-9
Google Scholar
[41]
M.A. Krivoglaz and K.P. Ryaboshapka, Phis. Met. Metallogr. USSR, 16 (1963) 14-20.
Google Scholar
[42]
A. Mezzi, S. Kaciulis, S.K. Balijepalli, R. Montanari, A. Varone, M. Amati, B. Aleman Llorente, Micro-chemical inhomogeneity in eutectic Pb-Bi alloy quenched from melt, Surf. and Interf. Anal., Published online in Wiley Online Library (wileyonlinelibrary. com) DOI 10. 1002/sia. 5368; Surf. Interface Anal. 46 (2014).
DOI: 10.1002/sia.5368
Google Scholar
[43]
S. Balijepalli, S. Kaciulis, M. Amati, R. Montanari, A. Varone, Elemental clustering and structure of liquid LBE, Advanced Materials Research Vol. 922 (2014) 785-790.
DOI: 10.4028/www.scientific.net/amr.922.785
Google Scholar
[44]
R. Montanari, A. Varone, Ordine a breve raggio nel fuso della lega eutettica Pb-Bi, La Metallurgia Italiana, 3 (2015) 3-8.
Google Scholar
[45]
R. Montanari, F. Gauzzi, XRD investigation of binary alloys solidification, Ed. S.S. Sadhal, Annals of the New York Academy of Sciences, 1161 (2009) 407-415.
DOI: 10.1111/j.1749-6632.2008.04317.x
Google Scholar
[46]
T.B. Massalski, Binary Alloy Phase Diagram, American Society for Metals (1987).
Google Scholar