Chemical Stability of Si-SiC Nanostructures under Physiological Conditions

Article Preview

Abstract:

The fast and direct detection of small quantities of biological and chemical species is of key importance for numerous biomedical applications. Extensive research has been conducted on nanoelectronic devices that can perform such detection with high sensitivity using silicon nanowires and nanostructures. However, it was recently demonstrated that Si material suffers a lack of long-term stability in physiological environments at nanometer scale [1,2], and is hence not suited for in situ sensing of biological molecules. The results presented here are two important steps toward the realization of core-shell Si-SiC NWFETs for the detection of biomolecules in liquid media. First, we show that SiC NWs exhibit higher chemical stability than Si NWs under physiological conditions. Second, we present the successful carburation of a thin film of Si resulting in a 3.6 nm thin SiC layer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

638-641

Citation:

Online since:

May 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Peled, A. Pevzner, H.P. Soroka, F. Patolsky, Morphological and chemical stability of silicon nanostructures and their molecular overlayers under physiological conditions: towards long-term implantable nanoelectronic biosensors, Journal of Nanobiotechnology 12 (2014).

DOI: 10.1186/1477-3155-12-7

Google Scholar

[2] W. Zhou, X. Dai, T. -M. Fu, C. Xie, J. Liu and C. M. Lieber, Long Term Stability of Nanowire Nanoelectronics in Physiological Environments, Nano Letters 14 (2014) 1614-1619.

DOI: 10.1021/nl500070h

Google Scholar

[3] M. Ollivier, L. Latu-Romain, B. Salem, L. Fradetal, V. Brouzet, J. -H. Choi and E. Bano, Integration of SiC-1D nanostructures into nano-field effect transistors, Materials Science in Semiconductor Processing 29 (2014) 218–222.

DOI: 10.1016/j.mssp.2014.03.020

Google Scholar

[4] L. Fradetal, V. Stambouli, E. Bano, B. Pelissier, J. -H. Choi, M. Ollivier, L. Latu-Romain, T. Boudou and I. Pignot-Paintrand, Bio-Functionalization of Silicon Carbide Nanostructures for SiC Nanowire-Based Sensors Realization, J. Nanosci. Nanotechnol. 14 (2014).

DOI: 10.1166/jnn.2014.8223

Google Scholar

[5] L. Fradetal, E. Bano, G. Attolini, F. Rossi and V. Stambouli, A silicon carbide nanowire field effect transistor for DNA detection, Nanotechnology, 27 (2016) 235501.

DOI: 10.1088/0957-4484/27/23/235501

Google Scholar

[6] E. Bano, L. Fradetal, V. Stambouli and G. Attolini, DNA Detection Using SiC Nanowire Based Transistor, Materials Science Forum, 858 (2016) 1006-1009.

DOI: 10.4028/www.scientific.net/msf.858.1006

Google Scholar

[7] S. Saddow, Silicon Carbide Biotechnology, second ed., Elsevier, (2016).

Google Scholar

[8] M. Negri, S. C. Dhanabalan, G. Attolini, P. Lagonegro, M. Campanini, M. Bosi and G. Salviati, Tuning the radial structure of core–shell silicon carbide nanowires, CrystEngComm, 17 (2015) 1258-1263.

DOI: 10.1039/c4ce01381f

Google Scholar

[9] M. Ollivier, L. Latu-Romain, M. Martin, S. David, A. Mantoux, E. Bano, V. Soulière, G. Ferro and T. Baron, Si–SiC core–shell nanowires, Journal of Crystal Growth, 363 (2013) 158–163.

DOI: 10.1016/j.jcrysgro.2012.10.039

Google Scholar