Silicon Carbide Radiation Detectors for Medical Applications

Article Preview

Abstract:

There is increasing interest in the development of radiation hard detector materials with the capability to discriminate within wide dose range and high radiation tolerance that are sensitive, and show a linear response. In this study, fabricated 4H-SiC Schottky diodes were exposed to dose rates ranging from 0.02 to 0.185 mGy/min to analyse the linearity and sensitivity at room temperature. High linearity response presented from the graph of current signal plotted versus dose rate which show enhancement of 104 in comparison to previous studies. The sensitivity measured at different bias voltages by exposing to 0.185 mGy/min dose rate show good reproducibility and stability of the current signal with time. Collected charge presented for all diodes exhibit linear behaviour of photon induced collected charge with the sensitivity between 1.40 to 8.38 x 105 nC/Gy for the 0.20 to 1 mGy absorbed dose range. Thus, these devices are ideally suited for the realisation of radiation detectors at moderate dose range.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

626-629

Citation:

Online since:

May 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Bruzzi, M. Bucciolini, M. Casati, D. Menichelli, C. Talamonti, C. Piemonte, and B. G. Svensson, Epitaxial silicon devices for dosimetry applications, Appl. Phys. Lett. 90 (2007) 17-19.

DOI: 10.1063/1.2723075

Google Scholar

[2] G. Bertuccio, G. Puglisi, D. Macera, R. Di Liberto, M. Lamborizio, and L. Mantovani, Silicon Carbide Detectors for in vivo Dosimetry, IEEE Trans. Nucl. Sci. 61 (2014) 961-966.

DOI: 10.1109/tns.2014.2307957

Google Scholar

[3] I. P. Nikitina, K. V. Vassilevski, N. G. Wright, A. B. Horsfall, A. G. O'Neill and C. M. Johnson, Formation and role of graphite and nickel silicide in nickel based Ohmic contacts to n-type silicon carbide, J. Appl. Phys. 97 (2005) 83709.

DOI: 10.1063/1.1872200

Google Scholar

[4] K. V. Vassilevski, I. P. Nikitina, N. G. Wright, A. B. Horsfall, A. G. O'Neill and C. M. Johnson, Device processing and characterisation of high temperature silicon carbide Schottky diodes, Microelectron. Eng. 83 (2006) 150-154.

DOI: 10.1016/j.mee.2005.10.041

Google Scholar

[5] I. P. Nikitina, K. V. Vassilevski, A. B. Horsfall, N. G. Wright, A. G. O'Neill and C. M. Johnson, T. Yamamoto, and R. K. Malhan Structural pattern formation in titanium-nickel contacts on silicon carbide following high-temperature annealing, Semicond. Sci. Technol. 21 (2006).

DOI: 10.1088/0268-1242/21/7/013

Google Scholar

[6] S. K. Cheung and N. W. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics, Appl. Phys. Lett. 49 (1986) 85-87.

DOI: 10.1063/1.97359

Google Scholar

[7] E. H. Rhoderick and R. H. Williams, Metal-semiconductor Contacts. University Press, Oxford, (1988).

Google Scholar

[8] M. Bruzzi, F. Nava, S. Russo, S. Sciortino, and P. Vanni, Characterisation of silicon carbide detector response to electron and photon irradiation, Diam. Relat. Mater. 10 (2001) 657-661.

DOI: 10.1016/s0925-9635(00)00380-0

Google Scholar

[9] M. Bruzzi, F. Nava, S. Pini, and S. Russo, High quality SiC applications in radiation dosimetry, Appl. Surf. Sci. 184 (2001) 425-430.

DOI: 10.1016/s0169-4332(01)00528-1

Google Scholar