Bulk β-Ga2O3 with (010) and (201) Surface Orientation: Schottky Contacts and Point Defects

Article Preview

Abstract:

Electrical properties of Schottky contacts of high work-function metals (Pd, Au, and Ni) on (010) and (201) oriented β-Ga2O3 were investigated. Current-voltage characteristics reveal that all the contacts exhibit high rectifying behavior with ideality factors as low as 1.04. However, the reverse leakage currents were lower in the (010) samples compared to the (201) ones. Thermal admittance spectroscopy confirms a main charge carrier level to be at ~0.15 eV below the conduction band edge (Ec). Secondary ion mass spectrometry indicates that Si may be responsible for this donor level. Deep level transient spectroscopy reveals four levels (E1-E4) in the upper part of the band gap, with the corresponding energy level positions at 0.56, 0.76, 1.01, and 1.48 eV below Ec.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] Higashiwaki, M., K. Sasaki, H. Murakami, Y. Kumagai, A. Koukitu, A. Kuramata, T. Masui, S. Yamakoshi. Semicond. Sci. Technol., 31 (2016): p.034001.

DOI: 10.1088/0268-1242/31/3/034001

Google Scholar

[2] Tippins, H.H. Phys. Rev., 140 (1965): p. A316-A319.

Google Scholar

[3] Sasaki, K., A. Kuramata, T. Masui, E.G. Víllora, K. Shimamura, S. Yamakoshi. Appl. Phys. Express, 5 (2012): p.035502.

DOI: 10.1143/apex.5.035502

Google Scholar

[4] Aida, H., K. Nishiguchi, H. Takeda, N. Aota, K. Sunakawa, Y. Yaguchi. Jpn. J. Appl. Phys., 47 (2008): p.8506.

Google Scholar

[5] Varley, J.B., J.R. Weber, A. Janotti, C.G. Van de Walle. Appl. Phys. Lett., 97 (2010): p.142106.

DOI: 10.1063/1.3499306

Google Scholar

[6] Higashiwaki, M., K. Sasaki, T. Kamimura, M. Hoi Wong, D. Krishnamurthy, A. Kuramata, T. Masui, S. Yamakoshi. Appl. Phys. Lett., 103 (2013): p.123511.

DOI: 10.1063/1.4821858

Google Scholar

[7] Guo, D., P. Li, Z. Wu, W. Cui, X. Zhao, M. Lei, L. Li, W. Tang. Sci. Rep., 6 (2016): p.24190.

Google Scholar

[8] Irmscher, K., Z. Galazka, M. Pietsch, R. Uecker, R. Fornari. J. Appl. Phys., 110 (2011): p.063720.

Google Scholar

[9] Suzuki, R., S. Nakagomi, Y. Kokubun, N. Arai, S. Ohira. Appl. Phys. Lett., 94 (2009): p.222102.

Google Scholar

[10] Sasaki, K., M. Higashiwaki, A. Kuramata, T. Masui, S. Yamakoshi. Electron Device Letters, IEEE, 34 (2013): pp.493-495.

DOI: 10.1109/led.2013.2244057

Google Scholar

[11] Splith, D., S. Müller, F. Schmidt, H. von Wenckstern, J.J. van Rensburg, W.E. Meyer, M. Grundmann. Phys. Status Solidi A, 211 (2014): pp.40-47.

Google Scholar

[12] Quemener, V., M. Alnes, L. Vines, P. Rauwel, O. Nilsen, H. Fjellvåg, E.V. Monakhov, B.G. Svensson. J. Phys. D: Appl. Phys., 45 (2012): p.315101.

DOI: 10.1088/0022-3727/45/31/315101

Google Scholar

[13] Quemener, V., L. Vines, E.V. Monakhov, B.G. Svensson. Appl. Phys. Lett., 102 (2013): p.232102.

Google Scholar