Mechanical Behavior of High-Mn Steels Processed by Hot Rolling

Article Preview

Abstract:

The mechanical properties of Fe-28%Mn-1.5%Al and Fe-0.6%C-18%Mn-1.5%Al-0.07%Nb (all in wt.%) steels subjected to hot plate rolling at a temperature of 1423 K with a total reduction of 60% were studied. The steels exhibited quite different mechanical properties in spite of almost the same original microstructures and similar stacking fault energies. The yield strength and total elongation of the Fe-28%Mn-1.5%Al steel are about 260 MPa and 45%, respectively, whereas those properties in the Fe-0.6%C-18%Mn-1.5%Al-0.07%Nb steel comprise 350 MPa and 53%, respectively. The tensile flow stress vs strain curves of the hot rolled steel samples can be described by Ludwigson-type relations with parameters being dependent on the strengthening mechanisms. Frequent deformation twinning in the Fe-0.6%C-18%Mn-1.5%Al-0.07%Nb steel promoted the strain hardening and improved the strength and ductility.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

299-304

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.C. De Cooman, Y. Estrin, S.K. Kim, Twinning-induced plasticity (TWIP) steels, Acta Mater. 142 (2018) 283-362.

DOI: 10.1016/j.actamat.2017.06.046

Google Scholar

[2] P.S. Kusakin, R.O. Kaibyshev, High-Mn twinning-induced plasticity steels: Microstructure and mechanical properties, Rev. Adv. Mater. Sci. 44 (2016) 326-360.

Google Scholar

[3] P. Kusakin, A. Belyakov, C. Haase, R. Kaibyshev, D.A. Molodov, Microstructure evolution and strengthening mechanisms of Fe–23Mn–0.3C–1.5Al TWIP steel during cold rolling, Mater. Sci. Eng. A 617 (2014) 52-60.

DOI: 10.1016/j.msea.2014.08.051

Google Scholar

[4] A. Saeed-Akbari, L. Mosecker, A. Schwedt, W. Bleck, Characterization and prediction of flow behavior in high-manganese twinning induced plasticity steels: Part i. mechanism maps and work-hardening behavior, Metall. Mater. Trans. A 43A (2012) 1688-1704.

DOI: 10.1007/s11661-011-0993-4

Google Scholar

[5] P. Kusakin, A. Belyakov, D.A. Molodov, R. Kaibyshev, On the effect of chemical composition on yield strength of TWIP steels, Mater. Sci. Eng. A 687 (2017) 82-84.

DOI: 10.1016/j.msea.2017.01.080

Google Scholar

[6] R.W.K. Honeycombe, The plastic deformation of metals, Edward Arnold, UK, (1984).

Google Scholar

[7] U.F. Kocks, A.S. Argon, M.F. Ashby, Thermodynamics and kinetics of slip, Prog. Mater. Sci. 19 (1975) 6–67.

Google Scholar

[8] R. Labusch, Statistische theorien der mischkristallhärtung, Acta Metall. 20 (1972) 917–927.

DOI: 10.1016/0001-6160(72)90085-5

Google Scholar

[9] Z. Yanushkevich, A. Belyakov, R. Kaibyshev, C. Haase, D.A. Molodov, Effect of cold rolling on recrystallization and tensile behavior of a high-Mn steel, Mater. Charact. 112 (2016) 180–187.

DOI: 10.1016/j.matchar.2015.12.021

Google Scholar

[10] D.C. Ludwigson. Modified stress-strain relation for fcc metals and alloys. Metal. Trans. 2 (1971) 2825-2828.

DOI: 10.1007/bf02813258

Google Scholar

[11] P. Kusakin, K. Tsuzaki, D.A. Molodov, R. Kaibyshev, A. Belyakov, Advanced Thermomechanical Processing for a High-Mn Austenitic Steel, Metall. Mater. Trans. A 47A (2016) 5704-5708.

DOI: 10.1007/s11661-016-3794-y

Google Scholar

[12] O. Bouaziz, H. Zurob, B. Chehab, J.D. Embury, S. Allain, M. Huang, Effect of chemical composition on work hardening of Fe-Mn-C TWIP steels, Mater. Sci. Technol. 27 (2011) 707-709.

DOI: 10.1179/026708309x12535382371852

Google Scholar