Effects of Annealing Parameters on Epitaxial Graphene on SiC Substrates

Article Preview

Abstract:

The effects of annealing on epitaxial graphene on SiC substrates with various conditions are investigated. Results show that high pressure hydrogen atmosphere is more effective to decouple the epitaxial graphene from SiC substrate than that of a relative lower pressure process. Besides, the characteristic 2D-peak of graphene in Raman spectra disappeared with an annealing temperature 1000 °C, which means that the epitaxial graphene layer was decomposed in this condition. The study also shows that the decomposition of graphene can be effectively suppressed by increasing carbon vapor partial pressure through introducing ethylene during high pressure hydrogen annealing at 1000 °C. And the epitaxial graphene is successfully transferred to quasi free standing graphene by the annealing with an appropriate flow of ethylene.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

14-20

Citation:

Online since:

May 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. V. Morozov, K. S. Novoselov, M. Katsnelson, F. Schedin, D. Elias, J. Jaszczak, and A. K. Geim, Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer .Phys. Rev. Lett. 100(1), 016602 (2008).

DOI: 10.1103/physrevlett.100.016602

Google Scholar

[2] R. S. Shishir and D. K. Ferry, Velocity saturation in intrinsic graphene .J. Phys. Condens. Matter 21(34), 344201(2009).

DOI: 10.1088/0953-8984/21/34/344201

Google Scholar

[3] F. Schwierz, Graphene transistors .Nat. Nanotechnol. 5(7), 487–496 (2010).

Google Scholar

[4] A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene .Rev.Mod. Phys. 81, 109 (2009).

DOI: 10.1103/revmodphys.81.109

Google Scholar

[5] C. Virojanadara, M. Syvaejarvi, R. Yakimova, L. I. Johansson, A. A. Zakharov, and T. Balasubramanian, Buffer layer induced band gap and surface low energy optical phonon scattering in epitaxial graphene on SiC(0001) .Phys. Rev. B 78, 245403 (2008).

DOI: 10.1016/j.susc.2009.11.011

Google Scholar

[6] K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Roehrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Mater. 8, 203(2009).

DOI: 10.1038/nmat2382

Google Scholar

[7] T. Shen, J. J. Gu, M. Xu, Y. Q. Wu, M. L. Bolen, M. A. Capano, L. W. Engel, and P. D. Ye, Observation of quantum-Hall effect in gated epitaxial graphene grown on SiC (0001) .Appl. Phys. Lett. 95, 172105 (2009).

DOI: 10.1063/1.3254329

Google Scholar

[8] K. V. Emtsev, Th. Seyller, F. Speck, L. Ley, P. Stojanov, J. D. Riley, and R. G. C. Leckey, Initial stages of the graphite-SiC (0001) interface formation studied by photoelectron spectroscopy .Mater. Sci. Forum 556–557, 525 (2007).

DOI: 10.4028/www.scientific.net/msf.556-557.525

Google Scholar

[9] K. V. Emtsev, F. Speck, Th. Seyller, L. Ley, and J. D. Riley, Interaction, growth, and ordering of epitaxial graphene on SiC {0001} surfaces: A comparative photoelectron spectroscopy study .Phys. Rev. B 77, 155303 (2008).

DOI: 10.1103/physrevb.77.155303

Google Scholar

[10] F. Speck, J. Jobst, F. Fromm, M. Ostler, D. Waldmann, M. Hundhausen, H. B. Weber, and Th. Seyller, The quasi-free-standing nature of graphene on H-saturated SiC (0001) .Appl. Phys. Lett. 99, 122106 (2011).

DOI: 10.1063/1.3643034

Google Scholar

[11] C. Riedl, C. Coletti, T. Iwasaki, A. A. Zakharov, and U. Starke, Quasi-Free-Standing Epitaxial Graphene on SiC Obtained by Hydrogen Intercalation .Phys. Rev. Lett. 103, 246804 (2009).

DOI: 10.1103/physrevlett.103.246804

Google Scholar

[12] S. Oida, F. R. McFeely, J. B. Hannon, R. M. Tromp, M. Copel, Z. Chen, Y. Sun, D. B. Farmer, and J. Yurkas, Decoupling graphene from SiC (0001) via oxidation. Phys. Rev. B 82, 041411 (2010).

DOI: 10.1103/physrevb.82.041411

Google Scholar

[13] C. Virojanadara, A. A. Zakharov, S. Watcharinyanon, R. Yakimova, and L. I. Johansson, A low-energy electron microscopy and x-ray photo-emission electron microscopy study of Li intercalated into graphene on SiC (0001). New J. Phys. 12, 125015 (2010).

DOI: 10.1088/1367-2630/12/12/125015

Google Scholar

[14] C. Xia, S. Watcharinyanon, A. A. Zakharov, R. Yakimova, L. Hultman, L. I. Johansson, and C. Virojanadara, Si intercalation/deintercalation of graphene on 6H-SiC(0001).Phys. Rev. B 85, 045418 (2012).

DOI: 10.1103/physrevb.85.045418

Google Scholar

[15] C. Xia, S. Watcharinyanon, A. A. Zakharov, L. I. Johansson, R. Yakimova, C. Virojanadara, Detailed studies of Na intercalation on furnace-grown graphene on 6H-SiC(0001). Surf. Sci. 2013, 613, 88–94. [CrossRef].

DOI: 10.1016/j.susc.2013.03.011

Google Scholar

[16] C. Riedl, C. Coletti, T. Iwasaki, A. A. Zakharov, U. Starke, Quasi free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 2009, 103, 246804. [CrossRef] [PubMed].

DOI: 10.1103/physrevlett.103.246804

Google Scholar

[17] D. DUTTA, S.K. HAZRA, J. DAS, C.K. SARKAR, and S. BASU, Temperature- and Hydrogen-Gas-Dependent Reversible Inversion of n-/p-Type Conductivity in CVD-Grown Multilayer Graphene (MLG) Film. J. Electron. Mater. 2016,45,6.

DOI: 10.1007/s11664-016-4381-0

Google Scholar

[18] A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M.Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S.Roth, and A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006).

DOI: 10.1103/physrevlett.97.187401

Google Scholar

[19] Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, and Z. X. Shen, ACS Nano 2, 2301 (2008).

Google Scholar

[20] T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini, R.Jalil, N. Bonini, D. M. Basko, C. Galiotis, N. Marzari, K. S. Novoselov,A. K. Geim, and A. C. Ferrari, Phys. Rev. B 79, 205433 (2009).

DOI: 10.1103/physrevb.79.205433

Google Scholar

[21] Ferrari, A.C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57. [CrossRef].

DOI: 10.1016/j.ssc.2007.03.052

Google Scholar

[22] M. Bruna, A.K. Ott, M. Ija, D. Yoon, U. Sassi, and A.C. Ferrari, ACS Nano 8, 7432 (2014).

Google Scholar

[23] M. Tokarczyk, G. Kowalski, M. Mo_ zd_ zonek, J. Borysiuk, R. Ste Rpniewski, W. Strupinski, P. Ciepielewski, and J. M. Baranowski, Structural investigations of hydrogenated epitaxial graphene grown on 4H-SiC (0001). Appl.Phys.Lett. 2013,103, 241915.

DOI: 10.1063/1.4848815

Google Scholar