[1]
S. V. Morozov, K. S. Novoselov, M. Katsnelson, F. Schedin, D. Elias, J. Jaszczak, and A. K. Geim, Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer .Phys. Rev. Lett. 100(1), 016602 (2008).
DOI: 10.1103/physrevlett.100.016602
Google Scholar
[2]
R. S. Shishir and D. K. Ferry, Velocity saturation in intrinsic graphene .J. Phys. Condens. Matter 21(34), 344201(2009).
DOI: 10.1088/0953-8984/21/34/344201
Google Scholar
[3]
F. Schwierz, Graphene transistors .Nat. Nanotechnol. 5(7), 487–496 (2010).
Google Scholar
[4]
A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene .Rev.Mod. Phys. 81, 109 (2009).
DOI: 10.1103/revmodphys.81.109
Google Scholar
[5]
C. Virojanadara, M. Syvaejarvi, R. Yakimova, L. I. Johansson, A. A. Zakharov, and T. Balasubramanian, Buffer layer induced band gap and surface low energy optical phonon scattering in epitaxial graphene on SiC(0001) .Phys. Rev. B 78, 245403 (2008).
DOI: 10.1016/j.susc.2009.11.011
Google Scholar
[6]
K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Roehrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Mater. 8, 203(2009).
DOI: 10.1038/nmat2382
Google Scholar
[7]
T. Shen, J. J. Gu, M. Xu, Y. Q. Wu, M. L. Bolen, M. A. Capano, L. W. Engel, and P. D. Ye, Observation of quantum-Hall effect in gated epitaxial graphene grown on SiC (0001) .Appl. Phys. Lett. 95, 172105 (2009).
DOI: 10.1063/1.3254329
Google Scholar
[8]
K. V. Emtsev, Th. Seyller, F. Speck, L. Ley, P. Stojanov, J. D. Riley, and R. G. C. Leckey, Initial stages of the graphite-SiC (0001) interface formation studied by photoelectron spectroscopy .Mater. Sci. Forum 556–557, 525 (2007).
DOI: 10.4028/www.scientific.net/msf.556-557.525
Google Scholar
[9]
K. V. Emtsev, F. Speck, Th. Seyller, L. Ley, and J. D. Riley, Interaction, growth, and ordering of epitaxial graphene on SiC {0001} surfaces: A comparative photoelectron spectroscopy study .Phys. Rev. B 77, 155303 (2008).
DOI: 10.1103/physrevb.77.155303
Google Scholar
[10]
F. Speck, J. Jobst, F. Fromm, M. Ostler, D. Waldmann, M. Hundhausen, H. B. Weber, and Th. Seyller, The quasi-free-standing nature of graphene on H-saturated SiC (0001) .Appl. Phys. Lett. 99, 122106 (2011).
DOI: 10.1063/1.3643034
Google Scholar
[11]
C. Riedl, C. Coletti, T. Iwasaki, A. A. Zakharov, and U. Starke, Quasi-Free-Standing Epitaxial Graphene on SiC Obtained by Hydrogen Intercalation .Phys. Rev. Lett. 103, 246804 (2009).
DOI: 10.1103/physrevlett.103.246804
Google Scholar
[12]
S. Oida, F. R. McFeely, J. B. Hannon, R. M. Tromp, M. Copel, Z. Chen, Y. Sun, D. B. Farmer, and J. Yurkas, Decoupling graphene from SiC (0001) via oxidation. Phys. Rev. B 82, 041411 (2010).
DOI: 10.1103/physrevb.82.041411
Google Scholar
[13]
C. Virojanadara, A. A. Zakharov, S. Watcharinyanon, R. Yakimova, and L. I. Johansson, A low-energy electron microscopy and x-ray photo-emission electron microscopy study of Li intercalated into graphene on SiC (0001). New J. Phys. 12, 125015 (2010).
DOI: 10.1088/1367-2630/12/12/125015
Google Scholar
[14]
C. Xia, S. Watcharinyanon, A. A. Zakharov, R. Yakimova, L. Hultman, L. I. Johansson, and C. Virojanadara, Si intercalation/deintercalation of graphene on 6H-SiC(0001).Phys. Rev. B 85, 045418 (2012).
DOI: 10.1103/physrevb.85.045418
Google Scholar
[15]
C. Xia, S. Watcharinyanon, A. A. Zakharov, L. I. Johansson, R. Yakimova, C. Virojanadara, Detailed studies of Na intercalation on furnace-grown graphene on 6H-SiC(0001). Surf. Sci. 2013, 613, 88–94. [CrossRef].
DOI: 10.1016/j.susc.2013.03.011
Google Scholar
[16]
C. Riedl, C. Coletti, T. Iwasaki, A. A. Zakharov, U. Starke, Quasi free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 2009, 103, 246804. [CrossRef] [PubMed].
DOI: 10.1103/physrevlett.103.246804
Google Scholar
[17]
D. DUTTA, S.K. HAZRA, J. DAS, C.K. SARKAR, and S. BASU, Temperature- and Hydrogen-Gas-Dependent Reversible Inversion of n-/p-Type Conductivity in CVD-Grown Multilayer Graphene (MLG) Film. J. Electron. Mater. 2016,45,6.
DOI: 10.1007/s11664-016-4381-0
Google Scholar
[18]
A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M.Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S.Roth, and A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006).
DOI: 10.1103/physrevlett.97.187401
Google Scholar
[19]
Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, and Z. X. Shen, ACS Nano 2, 2301 (2008).
Google Scholar
[20]
T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini, R.Jalil, N. Bonini, D. M. Basko, C. Galiotis, N. Marzari, K. S. Novoselov,A. K. Geim, and A. C. Ferrari, Phys. Rev. B 79, 205433 (2009).
DOI: 10.1103/physrevb.79.205433
Google Scholar
[21]
Ferrari, A.C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57. [CrossRef].
DOI: 10.1016/j.ssc.2007.03.052
Google Scholar
[22]
M. Bruna, A.K. Ott, M. Ija, D. Yoon, U. Sassi, and A.C. Ferrari, ACS Nano 8, 7432 (2014).
Google Scholar
[23]
M. Tokarczyk, G. Kowalski, M. Mo_ zd_ zonek, J. Borysiuk, R. Ste Rpniewski, W. Strupinski, P. Ciepielewski, and J. M. Baranowski, Structural investigations of hydrogenated epitaxial graphene grown on 4H-SiC (0001). Appl.Phys.Lett. 2013,103, 241915.
DOI: 10.1063/1.4848815
Google Scholar