[1]
R. Singh, Reliability and performance limitations in SiC power devices, Microelectron. Reliab. 46 (2006) 713-730.
DOI: 10.1016/j.microrel.2005.10.013
Google Scholar
[2]
K. Rottner, M. Frischholz, T. Myrtveit, et al., SiC power devices for high voltage applications, Mater. Sci. Eng. B 61-62 (1999) 330-338.
DOI: 10.1016/s0921-5107(98)00528-5
Google Scholar
[3]
S.H. Ryu, B.A. Hull, S. Dhar, et al., Performance, Reliability, and Robustness of 4H-SiC Power DMOSFETs, Mater. Sci. Forum 645–648 (2010) 969-947.
DOI: 10.4028/www.scientific.net/msf.645-648.969
Google Scholar
[4]
K. Matocha, P.A. Losee, A. Gowda, et al., Performance and Reliability of SiC MOSFETs for High-Current Power Modules, Mater. Sci. Forum 645-648 (2010) 1123-1126.
DOI: 10.4028/www.scientific.net/msf.645-648.1123
Google Scholar
[5]
L.C. Yu, G.T. Dunne, K.S. Matocha, et al., Reliability Issues of SiC MOSFETs: A Technology for High-Temperature Environments, IEEE Trans. Device Mater. Reliab. 10 (2010) 418-426.
DOI: 10.1109/tdmr.2010.2077295
Google Scholar
[6]
A. Lelis, R. Green, D. Habersat, Effect of Threshold-Voltage Instability on SiC Power MOSFET High-Temperature Reliability, Ecs Transactions 41 (2011) 203-214.
DOI: 10.1149/1.3631498
Google Scholar
[7]
H. Yano, Y. Oshiro, D. Okamoto, et al., Instability of 4H-SiC MOSFET Characteristics due to Interface Traps with Long Time Constants, Mater. Sci. Forum 679-680 (2011) 603-606.
DOI: 10.4028/www.scientific.net/msf.679-680.603
Google Scholar
[8]
J.T. Ryan, P.M. Lenahan, T.Grasser, et al., Observations of negative bias temperature instability defect generation via on the fly electron spin resonance, Appl. Phys. Lett. 96 (2010) 399-436.
DOI: 10.1063/1.3428783
Google Scholar
[9]
A. Lelis, D. Habersat, R. Green, et al., Time Dependence of Bias-Stress-Induced SiC MOSFET Threshold-Voltage Instability Measurements, IEEE Trans. Electron Devices 55 (2008) 1835-1840.
DOI: 10.1109/ted.2008.926672
Google Scholar
[10]
M.J. Tadjer, K.D. Hobart, E.A. Imhoff, et al., Temperature and Time Dependent Threshold Voltage Instability in 4H-SiC Power DMOSFET Devices, Mater. Sci. Forum 600-603 (2008) 1147-1150.
DOI: 10.4028/www.scientific.net/msf.600-603.1147
Google Scholar
[11]
A. Lelis, R. Green, D. Habersat, High-Temperature Reliability of SiC Power MOSFETs, Mater. Sci. Forum 679-680 (2011) 599-602.
DOI: 10.4028/www.scientific.net/msf.679-680.599
Google Scholar
[12]
D.K. Schroder, Negative bias temperature instability: What do we understand?, Microelectron. Reliab. 47 (2007) 841-852.
DOI: 10.1016/j.microrel.2006.10.006
Google Scholar
[13]
T. Okayama, S.D. Arthur, J.L. Garrett, et al., Bias-stress induced threshold voltage and drain current instability in 4H–SiC DMOSFETs, Solid-State Electron. 52 (2008) 164-170.
DOI: 10.1016/j.sse.2007.07.031
Google Scholar
[14]
A. Lelis, R. Green, D. Habersat, et al., Basic Mechanisms of Threshold-Voltage Instability and Implications for Reliability Testing of SiC MOSFETs, IEEE Trans. Electron Devices 62 (2015) 316-323.
DOI: 10.1109/ted.2014.2356172
Google Scholar
[15]
A. Lelis, D. Habersat, G. Lopez, et al., Bias Stress-Induced Threshold-Voltage Instability of SiC MOSFETs, Mater. Sci. Forum 527-529 (2006) 1317-1320.
DOI: 10.4028/www.scientific.net/msf.527-529.1317
Google Scholar
[16]
Y.J. He, H.L. Lv, X.Y. Tang, et al., Experimental study on the 4H-SiC-based VDMOSFETs with lightly doped P-well field-limiting rings termination, Solid-State Electron. 129 (2017) 175-181.
DOI: 10.1016/j.sse.2016.11.008
Google Scholar
[17]
S. Yang, Y. Zhang, Q. Song, et al., Impact of High-Temperature Storage Stressing (HTSS) on Degradation of High-Voltage 4H-SiC Junction Barrier Schottky Diodes, IEEE Trans. Power Electron. 33 (2017) 1874-1877.
DOI: 10.1109/tpel.2017.2737358
Google Scholar
[18]
A. Lelis, R. Green, M. El, et al., Effect of Stress and Measurement Conditions in Determining the Reliability of SiC Power MOSFETs, Ecs Transactions 50 (2013) 251-256.
DOI: 10.1149/05003.0251ecst
Google Scholar