An Improved 4H-SiC Trench Gate MOSFETs Structure with Low On-Resistance and Reduced Gate Charge

Article Preview

Abstract:

In this paper, an improved 4H-SiC trench-gate metal-oxide-semiconductor field effect transistors (UMOSFETs) structure with low on-resistance and reduced gate charge is proposed. The added n-type region in the improved structure reduces on-resistance of the device significantly while maintaining same breakdown voltage. The gate of the improved structure is designed as a p-n junction to reduce the gate-charge. The specific on-resistances of the improved 4H-SiC UMOSFETs is 1.87 mΩ.cm2 at VGS=18 V and VDS=10 V, compared with 4.48 mΩ.cm2 for the conventional p+ shielding UMOSFETs structure with same breakdown voltage. The on-resistance and figure of merit (FOM = VBR2/Ron) improve by 58.3% and 103.6%, respectively. Compared with the conventional structure, the results show that gate-drain charge of the improved structure can be improved by 23.8%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

151-156

Citation:

Online since:

May 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.J. Baliga, Silicon Carbide Power Devices, World Scientific Publishing Co. Pte. Ltd. (2005).

Google Scholar

[2] J.A. Cooper, Jr., U.S. Patent 6,180,958. ( 2001).

Google Scholar

[3] Y. Sui, T. Tsuji and J. A. Cooper, Jr, On-State Characteristics of SiC Power UMOSFETs on 115-um Drift Layers, IEEE Electron Device Letters, vol. 26 (2005) 255-257.

DOI: 10.1109/led.2005.845495

Google Scholar

[4] Y.Li, J.A. Cooper and M.A. Capano, High Voltage ( 3kV ) UMOSFETs in 4H-SiC, IEEE Trans. Electron Devices, vol.49 (2002) 972-975.

DOI: 10.1109/ted.2002.1003714

Google Scholar

[5] J. Tan, J.A. Cooper, Jr. and M.R. Melloch, High-voltage accumulation-layer UMOSFET's in 4H-SiC, IEEE Electron Device Lett., vol. 19 (1998) 487–489.

DOI: 10.1109/55.735755

Google Scholar

[6] Ying Wang, Kai Tian, Yue Hao, Cheng-Hao Yu and Yan-Juan Liu, 4H–SiC Step Trench Gate Power Metal–Oxide–Semiconductor Field-Effect Transistor, IEEE Electron Device Lett., vol.37 (2016) 633-635.

DOI: 10.1109/led.2016.2542183

Google Scholar

[7] J. S. Suehle, J. B. Bernstein, Y. Shapira, A. J. Lelis, D. Habersat and N.Goldsman, Characterization of Transient Gate Oxide Trapping in SiC MOSFETs Using Fast I-V Techniques, IEEE Trans. Electron Devices, vol.55 (2008) 2004-2012.

DOI: 10.1109/ted.2008.926626

Google Scholar

[8] Qingwen Song, Shuai Yang, Guannan Tang, Chao Han, Yimeng Zhang, Xiaoyan Tang, Yimen Zhang and Yuming Zhang, 4H-SiC Trench MOSFET With L-Shaped Gate, IEEE Electron Device Lett., vol.37 (2016) 463-466.

DOI: 10.1109/led.2016.2533432

Google Scholar

[9] T. Tamaki, G. G. Walden, Y. Sui and J. A. Cooper, Jr., Optimization of on-state and switching performances for 15–20-kV 4H-SiC IGBTs, IEEE Trans. Electron Devices, vol. 55 (2008) 1920–(1927).

DOI: 10.1109/ted.2008.926965

Google Scholar

[10] T. Nakamura, Y. Nakano, M. Aketa, R. Nakamura, S. Mitani, H. Sakairi and Y. Yokotsuji, High performance SiC trench devices with ultra-low Ron, in Proc. IEEE Int. Electron Devices Meeting, Washington, DC, USA, Dec. 1-3 (2011).

DOI: 10.1109/iedm.2011.6131619

Google Scholar

[11] T. Nakamura, M. Aketa, Y. Nakano, M. Sasagawa and T. Otsuka. Novel developments towards increased SiC power device and module efficiency, in Proc. IEEE Energytech. Cleveland, OH, USA, May 1-6 (2012).

DOI: 10.1109/energytech.2012.6304633

Google Scholar

[12] Hiroshi Yano, Hiroshi Nakao, Hidenori Mikami, Tomoaki Hatayama, Yukiharu Uraoka and Takashi Fuyuki, Anomalously anisotropic channel mobility on trench sidewalls in 4H-SiC trench-gate metal-oxide-semiconductor field effect transistors fabricated on 8° off substrates, Appl. Phys. Lett., vol. 90 (2007) 042102.

DOI: 10.1063/1.2434157

Google Scholar

[13] Yuichiro Nanen, Muneharu Kato, Jun Suda and Tsunenobu Kimoto, Effects of nitridation on 4H-SiC MOSFETs fabricated on various crystal faces, IEEE Trans. Electron Devices, vol. 60 (2013) 1260–1262.

DOI: 10.1109/ted.2012.2236333

Google Scholar

[14] Dai Okamoto, Hiroshi Yano, Kenji Hirata, Tomoaki Hatayama and Takashi Fuyuki, Improved inversion channel mobility in 4H-SiC MOSFETs on Si face utilizing phosphorus-doped gate oxide, IEEE Electron Device Lett., vol. 31 (2010) 710–712.

DOI: 10.1109/led.2010.2047239

Google Scholar

[15] Yasuhiro Kagawa , Nobuo Fujiwara, Katsutoshi Sugawara, Rina Tanaka, Yutaka Fukui, Yasuki Yamamoto, Naruhisa Miura, Masayuki Imaizumi, Shuhei Nakata and Satoshi Yamakawa, 4H-SiC trench MOSFET with bottom oxide protection, Mat. Sci. Forum, vol. 778-780 (2014) 919-922.

DOI: 10.4028/www.scientific.net/msf.778-780.919

Google Scholar

[16] W. S. Loh, B. K. Ng, J. S. Ng, S. I. Soloviev, H.-Y. Cha, P. M. Sandvik, C. M. Johnson and J. P. R. David, Impact ionization coefficients in 4H-SiC, IEEE Trans. Electron Devices, vol. 55 (2008), 1984–(1990).

DOI: 10.1109/ted.2008.926679

Google Scholar

[17] ATLAS User's Manual: Device Simulation Software, Version 5.16.3.R, Silvaco Int., Santa Clara, CA, (2010).

Google Scholar

[18] R. J. E. Hueting et al., Gate-drain charge analysis for switching in power trench MOSFETs, IEEE Trans. Electron Devices, vol. 51 (2004) p.1323–1330.

DOI: 10.1109/ted.2004.832096

Google Scholar