GaN Schottky Barrier Diodes with TiN Electrode for Microwave Power Transmission

Article Preview

Abstract:

In this study, TiN anode GaN Schottky barrier diodes (SBDs) with a low access sheet resistance of 28 Ω/□ were fabricated for microwave power transmission application. The performance of the diodes at room temperature (RT) is comparable with the ideality factor n and Schottky barrier height (SBH) were 1.28 and 0.47 eV for the 8-finger SBDs, 1.22 and 0.49 eV for the 16-finger SBDs, respectively. A low on-resistance of 5.71 and 3.58 Ω were obtained for 8-and 16-finger SBD at RT, respectively. The low series resistance induced by larger anode area of 16-finger SBDs results in a lower turn-on voltage of 0.47 V compared with that of 0.68 V for the 8-finger one. Besides, the temperature dependent current-voltage characteristics demonstrate that the TiN anode has a good temperature stability. And the temperature dependent performance of the 16-finger SBDs present a better uniformity than that of the 8-finger SBDs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

126-132

Citation:

Online since:

May 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Xie, Y. Shi, Y. T. Hou, & W. J. Lou, Wireless power transfer and applications to sensor networks, J. IEEE Wire. Commun., 20 (2013) 140-145.

DOI: 10.1109/mwc.2013.6590061

Google Scholar

[2] J. O. McSpadden, & J. C. Mankins, Space solar power programs and microwave wireless power transmission technology, J. IEEE Microw. Mag., 3 (2002) 46-57.

DOI: 10.1109/mmw.2002.1145675

Google Scholar

[3] J. M. Miller, O. C. Onar, M. Chinthavali, Primary-side power flow control of wireless power transfer for electric vehicle charging, J. IEEE Journal of Emerging and Selected Topics in Power Electronics, 3 (2015) 147-162.

DOI: 10.1109/jestpe.2014.2382569

Google Scholar

[4] A. Etinger, M. Pilossof, B. Litvak, D. Hardon, M. Einat, B. Kapilevich and Y. Pinhasi, Characterization of a Schottky Diode Rectenna for Millimeter Wave Power Beaming Using High Power Radiation Sources, J. Acta Physica Polonica A, 131 (2017) 1280-1284.

DOI: 10.12693/aphyspola.131.1280

Google Scholar

[5] Y. Saitoh, K. Sumiyoshi, M. Okada, T. Horii, T. Miyazaki, H. Shiomi, M. Ueno, K. Katayama, M. Kiyama, and T. Nakamura, Extremely low on-resistance and high breakdown voltage observed in vertical GaN Schottky barrier diodes with high-mobility drift layers on low-dislocation-density GaN substrates, J. Applied Physics Express, 3 (2010) 081001.

DOI: 10.1143/apex.3.081001

Google Scholar

[6] W. Chen, K. Y. Wong, & K. J. Chen, Single-chip boost converter using monolithically integrated AlGaN/GaN lateral field-effect rectifier and normally off HEMT, J. IEEE Electron Device Lett., 3 (2009) 430-432.

DOI: 10.1109/led.2009.2015897

Google Scholar

[7] K. Park, Y. Park, S. Hwang, W. Jeon, J. Lee, 1kV AlGaN/GaN power SBDs with reduced on resistances, C. Power Semiconductor Devices and ICs (ISPSD), 2011 IEEE 23rd International Symposium on. IEEE, (2011) 223-226.

DOI: 10.1109/ispsd.2011.5890831

Google Scholar

[8] U. K. Mishra, L. Shen, T. E. Kazior, & Y. F. Wu, GaN-based RF power devices and amplifiers, J. Proceedings of the IEEE, 96 (2008) 287-305.

DOI: 10.1109/jproc.2007.911060

Google Scholar

[9] A. K. Panda, D. Pavlidis & E. Alekseev, DC and high frequency characteristics of GaN-based IMPATTs, J. IEEE Trans. on Electron Devices, 48 (2001) 820-823.

DOI: 10.1109/16.915735

Google Scholar

[10] N. Miura, T. Nanjo, M. Suita, T. Oishi, Y. Abe, T. Ozeki, H. Ishikawa, T. Egawa, & T. Jimbo, Thermal annealing effects on Ni/Au based Schottky contacts on n-GaN and AlGaN/GaN with insertion of high work function metal, J. Solid-State Electron., 48 (2004) 689-695.

DOI: 10.1016/j.sse.2003.07.006

Google Scholar

[11] L. Li, X. Wang, Y. Liu, J.-P. Ao, NiO/GaN heterojunction diode deposited through magnetron reactive sputtering, J. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 34 (2016) 02D104.

DOI: 10.1116/1.4937737

Google Scholar

[12] Y. Cao, R. Chu, R. Li, M. Chen, R. Chang & B. Hughes, High-voltage vertical GaN Schottky diode enabled by low-carbon metal-organic chemical vapor deposition growth, J. Appl. Phys. Lett., 108 (2016) 062103.

DOI: 10.1063/1.4941814

Google Scholar

[13] T. Hayashida, T. Nanjo, A. Furukawa, & M. Yamamuka, Vertical GaN merged PIN Schottky diode with a breakdown voltage of 2 kV, J. Appl. Phys. Express, 10 (2017) 061003.

DOI: 10.7567/apex.10.061003

Google Scholar

[14] L. Li, J. Chen, X. Gu, X. Li, T. Pu, & J. P. Ao, Temperature sensor using thermally stable TiN anode GaN Schottky barrier diode for high power device application, J. Superlattices and Microstructures, 123 (2018) 274-279.

DOI: 10.1016/j.spmi.2018.09.007

Google Scholar

[15] K. Takahashi, J. P. Ao, Y. Ikawa, C. Y. Hu, H. Kawai, N. Shinohara, N. Niwa, & Y. Ohno, GaN Schottky diodes for microwave power rectification, J. Jpn. J. Appl. Phys., 48 (2009) 04C095.

DOI: 10.1143/jjap.48.04c095

Google Scholar

[16] Y. Min, B. Zhang, Y. Fan, X. Liang, D. Xing, & J. Y. Wang, The design of 110GHz frequency tripler using GaN-based planar Schottky diodes, C. UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT), (2016) 92-93.

DOI: 10.1109/ucmmt.2016.7873973

Google Scholar

[17] L. A. Li, A. Kishi, Q. Liu, Y. Itai, R. Fujihara, Y. Ohno, & J. P. Ao, GaN Schottky barrier diode with tin electrode for microwave rectification, J. IEEE J. Electron Devices Soc., 2 (2014) 168-173.

DOI: 10.1109/jeds.2014.2346395

Google Scholar

[18] E. J. Miller, E. T. Yu, P. Waltereit, & J. S. Speck, Analysis of reverse-bias leakage current mechanisms in GaN grown by molecular-beam epitaxy, J. Appl. Phys. Let., 84 (2004) 535-537.

DOI: 10.1063/1.1644029

Google Scholar

[19] D.D. Sang, H.D. Li, S.H. Cheng, Q.L. Wang, Q. Yu, & Y.Z. Yang, Electrical transport behavior of n-ZnO nanorods/p-diamond heterojunction device at higher temperatures, J. J. Appl. Phys., 112 (2012) 036101.

DOI: 10.1063/1.4745039

Google Scholar