Low Defect Thick Homoepitaxial Layers Grown on 4H-SiC Wafers for 6500 V JBS Devices

Article Preview

Abstract:

70-um thick homoepitaxial layers with very low defect density were grown on 6-inch 4° off-axis wafers using hot-wall chemical vapor deposition (CVD). Process optimization resulted in reduction of the density of triangular defects from 1.01 cm-2 to 0.14 cm-2. The treatment of wafer (CMP or selection) was essential. The in-situ etch process was optimized prior to the epitaxial growth. Junction Barrier Schottky diodes fabricated on the epitaxial films presented a typical I–V characteristic and a block voltage of 6500 V.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

114-120

Citation:

Online since:

May 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Matsunami and T. Kimoto, Step-controlled epitaxial growth of SiC: high quality homoepitaxy. Mat Sci Eng R Rep. 20(1997)125–166.

DOI: 10.1016/s0927-796x(97)00005-3

Google Scholar

[2] L. Dong, G. S. Sun, J. Yu, et al. Characterization of Obtuse Triangular Defects on 4H-SiC 4° off-Axis Epitaxial Wafers. Chin. Phys. Lett. 30(9) (2013)96105.

DOI: 10.1088/0256-307x/30/9/096105

Google Scholar

[3] T. Kimoto, Material science and device physics in SiC technology for high-voltage power devices. Japanese Journal of Applied Physics 54(4) (2015)040103.

DOI: 10.7567/jjap.54.040103

Google Scholar

[4] Y. X. Niu, X. Y. Tang, R. X. Jia et al, Influence of Triangle Structure Defect on the Carrier Lifetime of the 4H-SiC Ultra-Thick Epilayer, Chin. Phys.Lett. 35(2018) 077103.

DOI: 10.1088/0256-307x/35/7/077103

Google Scholar

[5] T. Ueda, H. Nishino, and H. Matsunami, Crystal growth of sic by step-controlled epitaxy. Journal of Crystal Growth, 104(3) (1990) 695-700.

DOI: 10.1016/0022-0248(90)90013-b

Google Scholar

[6] T. Kimoto, and H. Matsunami, Surface kinetics of adatoms in vapor phase epitaxial growth of sic on 6H-SiC {0001} vicinal surfaces. Journal of Applied Physics, 75(2) (1994)850-859.

DOI: 10.1063/1.356439

Google Scholar

[7] J.A Powell, J.B. Petit, J.H. Edgar et al, Investigation of the growth of 3c-sic and 6h-sic films on low-tilt-angle vicinal (0001) 6H-SiC wafers. Applied Physics Letters, 59(3) (1991) 333-335.

DOI: 10.1063/1.105587

Google Scholar

[8] A.O. Konstantinov, C. Hallin, O. Kordina, and E. Janzén, Effect of vapor composition on polytype homogeneity of epitaxial silicon carbide. Journal of Applied Physics, 80(10) (1996) 5704-5712.

DOI: 10.1063/1.363622

Google Scholar

[9] H. Das, G. Melnychuk and Y. Koshka, Triangular defects in the low-temperature halo-carbon homoepitaxial growth of 4H-SiC. Journal of Crystal Growth, 312(12) (2010)1912-1919.

DOI: 10.1016/j.jcrysgro.2010.03.022

Google Scholar

[10] A. Shrivastava, P. Muzykov, J.D. Caldwell, and T.S. Sudarshan. Study of triangular defects and inverted pyramids in 4H-SiC 4° off-cut (0 0 0 1) Si face epilayers. Journal of Crystal Growth, 310(2008)4443–4450.

DOI: 10.1016/j.jcrysgro.2008.07.102

Google Scholar

[11] G. Chung, M.J. Loboda, J. Zhang et al, 4h-sic epitaxy with very smooth surface and low basal plane dislocation on 4 degree off-axis wafer. Materials Science Forum, 679-680(2011)123-126.

DOI: 10.4028/www.scientific.net/msf.679-680.123

Google Scholar

[12] H. Das, S. Sunkari, T. Oldham, J. Rodgers, J. Casady, Uniformity and morphology of 10x100mm 4 off-axis 4H-SiC epitaxial layers and their effect on device performance, Mat. Sci. Forum 740-742 (2013) 221-224.

DOI: 10.4028/www.scientific.net/msf.740-742.221

Google Scholar

[13] M. Yazdanfar, I.G. Ivanov, H. Pedersen, O. Kordina, Reduction of structural defects in thick 4H-SiC epitaxial layers grown on 4° off-axis substrate, Journal of Applied Physics,113(2013) 223502-223508.

DOI: 10.1063/1.4809928

Google Scholar

[14] A.Q. Konstantinov, Q. Wahab, N. Nordell, U. Lindefelt, Ionization rates and critical fields in 4H silicon carbide, Appl. Phys. Lett. 71 (1997) 90–92.

DOI: 10.1063/1.119478

Google Scholar

[15] B. Jayant Baliga, Fundamentals of Power Semiconductor Devices, Springer, US, (2008).

Google Scholar

[16] K. Wada, T. Kimoto, K. Nishikawa, et al. Epitaxial growth of 4H-SiC on 4° off-axis (0001) and (000-1) substrates by hot-wall chemical vapor deposition. Journal of Crystal Growth 291 (2006) 370–374.

DOI: 10.1016/j.jcrysgro.2006.03.039

Google Scholar

[17] M.B.J. Wijesundara, R. Azevedo, Silicon Carbide Microsystems for Harsh Environments, Springer, New York, 2011, 33.

Google Scholar

[18] M. Sasaki, K. Tamura, H. Sako, M. Kitabatake, et al, Analysis on generation of localized step-bunchings on 4h-sic(0001)si face by synchrotron x-ray topography. Materials Science Forum, 778-780(2014)398-401.

DOI: 10.4028/www.scientific.net/msf.778-780.398

Google Scholar

[19] H. Sako, T. Yamashita, K. Tamura, et al, Microstructural Analysis of Damaged Layer Introduced during Chemo-Mechanical Polishing. Mater. Sci. Forum 778–780(2014)370-373.

DOI: 10.4028/www.scientific.net/msf.778-780.370

Google Scholar

[20] M. Sasaki, H. Matsuhata, K. Tamura, et al, Synchrotron X-ray topography analysis of local damage occurring during polishing of 4H-SiC wafers. Jpn. J. Appl. Phys. 54(2015) 091301.

DOI: 10.7567/jjap.54.091301

Google Scholar

[21] J. A. Powell, J. B. Petit, J. H. Edgar, et al. Investigation of the Growth of 3C-SiC and 6H-SiC Films on Low-Tilt-Angle Vicinal (0001) 6H-SiC Wafers. Appl. Phys. Lett. 59(1991) 333-335.

DOI: 10.1063/1.105587

Google Scholar