[1]
FUJI KEIZAI CO., Ltd Website, March 9th, 2018 (in Japanese). Information on https://www.fuji-keizai.co.jp.
Google Scholar
[2]
N. Iwamuro and T. Laska, IGBT History, State -of-the -art, and future prospects,, IEEE Trans. Electron Devices, vol.64, no.3, 2017, pp.741-752.
DOI: 10.1109/TED.2017.2654599
Google Scholar
[3]
A. Nakagawa, Theoretical investigation of silicon limit characteristics of IGBT,, in Proc. Int. Symp. Power Semiconductors and ICs, Jun. 2006, pp.5-8.
DOI: 10.1109/ISPSD.2006.1666057
Google Scholar
[4]
M. Sumitomo, J. Asai, H. Sakane, K. Arakawa, Y. Higuchi, and M. Matsui, Low loss IGBT with partially narrow mesa structure (PNM - IGBT),, in Proc. Int. Symp. Power Semiconductors and ICs, Jun. 2012, pp.17-20.
DOI: 10.1109/ISPSD.2012.6229012
Google Scholar
[5]
H. Feng, W. Yang, Y. Onozawa, T. Yoshimura, A. Tamenori, and J. K. O. Sin, A 1200 V -class fin P -body IGBT with ultra -narrow -mesas for low conduction loss,, in Proc. Int. Symp. Power Semiconductors and ICs, Jun. 2016, pp.203-206.
DOI: 10.1109/ISPSD.2016.7520813
Google Scholar
[6]
K. Eikyu, A. Sakai, H. Matsuura, Y. Nakazawa, Y. Akiyama, Y. Yamaguchi, and M. Inuishi, On the scaling limit of the Si -IGBTs with very narrow mesa structure,, in Proc. Int. Symp. Power Semiconductors and ICs, Jun. 2016, pp.211-214.
DOI: 10.1109/ISPSD.2016.7520815
Google Scholar
[7]
H. Takahashi, A. Yamamoto, S. Aono, and T. Minato, 1200V reverse conducting IGBT,, in Proc. Int. Symp. Power Semiconductors and ICs, May 2004, pp.133-136.
DOI: 10.1109/WCT.2004.239844
Google Scholar
[8]
O. Hellmund, L. Lorenz, and H. Rüthing, 1200V reverse conducting IGBTs for soft -switching applications,, China Power Electron. J., vol.5, 2005, pp.20-22.
Google Scholar
[9]
K. Satoh, T. Iwagami, H. Kawafuji, S. Shirakawa, M. Honsberg, and E. Thal, A new 3A/600V transfer mold IPM with RC (reverse conducting) -IGBT,, in Proc. PCIM Europe., May 2006, p.73–78.
Google Scholar
[10]
D. Werber, T. Hunger, M. Wissen, T. Schütze, M. Lassmann, B. Stemmer, V. Komarnitskyy, F. Pfirsch, A 1000A 6.5 kV Power Module Enabled by Reverse-Conducting Trench-IGBT-Technology,, in Proc. PCIM Europe., May 2015, pp.351-358.
Google Scholar
[11]
H. Yano, T. Hirao, T. Kimoto, H. Matsunami, K. Asano, and Y. Sugawara, High channel mobility in inversion layers of 4H-SiC MOSFETs by utilizing (11-20) face,, IEEE Electron Device Lett., vol. 20, no. 12, 1999, pp.611-613.
DOI: 10.1109/55.806101
Google Scholar
[12]
J. Senzaki, K. Kojima, S. Harada, R. Kosugi, S. Suzuki, T. Suzuki, and K. Fukuda, Excellent effects of hydrogen postoxidation annealing on inversion channel mobility of 4H-SiC MOSFET fabricated on (11-20) face,, IEEE Electron Device Lett., vol. 23, no. 1, 2002, pp.13-15.
DOI: 10.1109/55.974797
Google Scholar
[13]
Y. Nanen, M. Kato, J. Suda, and T. Kimoto, Effects of nitridation on 4H-SiC MOSFETs fabricated on various crystal faces,, IEEE Trans. Electron Devices, vol. 60, no. 3, 2013, pp.1260-1262.
DOI: 10.1109/TED.2012.2236333
Google Scholar
[14]
T. Kimoto and J. A. Cooper, Fundamentals of silicon carbide technology: growth, characterization, devices, and applications,, Chapter 8, Singapore: Wiley, Nov. (2014).
Google Scholar
[15]
T. Nakamura, Y. Nakano, M. Aketa, R. Nakamura, S. Mitani, H. Sakairi, and Y. Yokotsuji, High performance SiC trench devices with ultra -low Ron,, in IEEE IEDM Tech. Dig., Dec. 2011, pp.599-601.
DOI: 10.1109/iedm.2011.6131619
Google Scholar
[16]
R. Tanaka, Y. Kagawa, N. Fujiwara, K. Sugawara, Y. Fukui, N. Miura, M. Imaizumi, and S. Yamakawa, Impact of grounding the bottom oxide protection layer on the short-circuit ruggedness of 4H-SiC trench MOSFETs,, in Proc. Int. Symp. Power Semiconductors and ICs, Jun. 2014, p.75–78.
DOI: 10.1109/ISPSD.2014.6855979
Google Scholar
[17]
A. Ichimura, Y. Ebihara, S. Mitani, M. Noborio, Y. Takeuchi, S. Mizuno, T. Yamamoto, and K. Tsuruta, 4H-SiC Trench MOSFET with Ultra-Low On-Resistance by using Miniaturization Technology,, Material Science Forum, vol.924, p.707–710, 2018.
DOI: 10.4028/www.scientific.net/MSF.924.707
Google Scholar
[18]
Y. Ebihara, A. Ichimura, A. Mitani, M. Noborio, Y. Takeuchi, S. Mizuno, T.Yamamoto, and K. Tsuruta, Deep-P Encapsulated 4H-SiC Trench MOSFETs With Ultra Low RonQgd,, in Proc. Int. Symp. Power Semiconductors and ICs, May 2018, p.44–48.
DOI: 10.1109/ISPSD.2018.8393598
Google Scholar
[19]
W. Sung and B. J. Baliga, Monothithically Integrated 4H-SiC MOSFET and JBS Diode (JBSFET) Using a Single Ohmic/Schottky Process Scheme,, IEEE Electron Devices Lett. vol. 37, no. 12, 2016, pp.1605-1608.
DOI: 10.1109/LED.2016.2618720
Google Scholar
[20]
S. Hino, H. Hatta, K. Sadadamatsu, Y. Nagahisa, S. Yamamoto, T. Iwamatsu, Y. Yamamoto, M. Imaizumi, S. Nakata, and S. Yamakawa, Demonstration of SiC-MOSFET Embedding Schottky Barrier Diode for Inactivation of Parasitic Body Diode,, Material Science Forum, vol.897, p.477–482, 2017.
DOI: 10.4028/www.scientific.net/MSF.897.477
Google Scholar
[21]
F. J. Hsu, C. T. Yen, C. C. Hung, H. T. Hung, C. Y. Lee, L. S. Lee, Y. F. Huang, T. Z. Chen, P. J. Chuang, High efficiency high reliability SiC MOSFET with monolithically integrated Schottky rectifier,, Proc. Int. Symp. Power Semiconductors and ICs, May 2017, p.45–48.
DOI: 10.23919/ISPSD.2017.7988889
Google Scholar
[22]
Y. Kobayashi, H. Ishimori, A. Kinoshita, T. Kojima, M. Takei, H. Kimura, and S. Harada, Evaluation of Schottky barrier height on 4H - SiC m -face {1 -100} for schottky barrier diode wall integrated trench MOSFET, , Japanese Journal of Applied Physics, vo,56, no.4S, 2017, 04CR08 1-6.
DOI: 10.7567/JJAP.56.04CR08
Google Scholar
[23]
Y. Kobayashi, N. Ohse, T.Morimoto. M.Kato, T. Kojima, M. Miyazato, M. Takei, H. Kimura, and S. Harada, "Body pin diode inactivation with low on-resistance achieved by 1 1.2kV-class 4H-SiC SWITCH-MOS, in IEEE IEDM Tech. Dig., Dec. 2017, pp.211-214.
DOI: 10.1109/iedm.2017.8268356
Google Scholar
[24]
G. Romano, L. Maresca, M. Riccio, V. d'Alessandro, A. Fayyaz, and A. Castellazzi, Short-circuit failure mechanism of SiC power MOSFETs,, in Proc. Int. Symp. Power Semiconductors and ICs, May 2015, pp.345-348.
DOI: 10.1109/ISPSD.2015.7123460
Google Scholar
[25]
A. Castellazzi, A. Fayyaz, L. Yang, M. Riccio, and A. Irace, Short-circuit robustness of SiC Power MOSFETs: experimental analysis,, in Proc. Int. Symp. Power Semiconductors and ICs, Jun. 2014, pp.71-74.
DOI: 10.1109/ISPSD.2014.6855978
Google Scholar
[26]
X. Huang, G. Wang, Y. Li, A. Q. Huang, and B. J. Baliga, Short-circuit capability of 1200V SiC MOSFET and JFET for fault protection,, in Applied Power Electronics Conference and Exposition (APEC), 2013 Twenty-Eighth Annual IEEE, 2013, pp.197-200.
DOI: 10.1109/apec.2013.6520207
Google Scholar
[27]
T.-T. Nguyen, A. Ahmed, T. Thang, and J.-H. Park, Gate oxide reliability issues of SiC MOSFETs under short-circuit operation,, IEEE Transactions on Power Electronics, vol. 30, no.5, 2015, pp.2445-2455.
DOI: 10.1109/tpel.2014.2353417
Google Scholar
[28]
J. An, M. Namai, and N. Iwamuro, Experimental and theoretical analyses of gate oxide and junction reliability for 4H-SiC MOSFET under short-circuit operation,, Japanese Journal of Applied Physics, vol.55, 124102-1~4, 2016.
DOI: 10.7567/JJAP.55.124102
Google Scholar
[29]
M. Namai, J. An, H. Yano and N. Iwamuro, Experimental and Numerical Demonstration and Optimized Methods for SiC Trench MOSFET Short-Circuit Capability,, in Proc. Int. Symp. Power Semiconductors and ICs, May 2017, pp.363-366.
DOI: 10.23919/ISPSD.2017.7988993
Google Scholar
[30]
M. Namai, J. An, H. Yano and N. Iwamuro, Investigation of Short-circuit Failure Mechanisms of SiC MOSFETs by varying DC bus voltage,, Japanese Journal of Applied Physics, vol.57, 0740102-1~10, 2018.
DOI: 10.7567/JJAP.57.074102
Google Scholar
[31]
J.An, M.Namai, H.Yano, N.Iwamuro, Y.Kobayashi, S.Harada, Methodology for Enhanced Short-Circuit Capability of SiC MOSFETs,, in Proc. Int. Symp. Power Semiconductors and ICs, May 2018, pp.391-394.
DOI: 10.1109/ISPSD.2018.8393685
Google Scholar