Recent Progress of SiC MOSFET Devices

Article Preview

Abstract:

SiC MOSFETs are superior candidates as next power semiconductor devices for many power transform systems. Owing to high requirement of stability for the whole application systems, it is essential to explore the optimized structures and operations for SiC MOSFETs with not only the extremely low on resistance but also much higher robustness. Overview on recent device technologies of SiC MOSFETs is given.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

90-98

Citation:

Online since:

May 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] FUJI KEIZAI CO., Ltd Website, March 9th, 2018 (in Japanese). Information on https://www.fuji-keizai.co.jp.

Google Scholar

[2] N. Iwamuro and T. Laska, IGBT History, State -of-the -art, and future prospects,, IEEE Trans. Electron Devices, vol.64, no.3, 2017, pp.741-752.

DOI: 10.1109/TED.2017.2654599

Google Scholar

[3] A. Nakagawa, Theoretical investigation of silicon limit characteristics of IGBT,, in Proc. Int. Symp. Power Semiconductors and ICs, Jun. 2006, pp.5-8.

DOI: 10.1109/ISPSD.2006.1666057

Google Scholar

[4] M. Sumitomo, J. Asai, H. Sakane, K. Arakawa, Y. Higuchi, and M. Matsui, Low loss IGBT with partially narrow mesa structure (PNM - IGBT),, in Proc. Int. Symp. Power Semiconductors and ICs, Jun. 2012, pp.17-20.

DOI: 10.1109/ISPSD.2012.6229012

Google Scholar

[5] H. Feng, W. Yang, Y. Onozawa, T. Yoshimura, A. Tamenori, and J. K. O. Sin, A 1200 V -class fin P -body IGBT with ultra -narrow -mesas for low conduction loss,, in Proc. Int. Symp. Power Semiconductors and ICs, Jun. 2016, pp.203-206.

DOI: 10.1109/ISPSD.2016.7520813

Google Scholar

[6] K. Eikyu, A. Sakai, H. Matsuura, Y. Nakazawa, Y. Akiyama, Y. Yamaguchi, and M. Inuishi, On the scaling limit of the Si -IGBTs with very narrow mesa structure,, in Proc. Int. Symp. Power Semiconductors and ICs, Jun. 2016, pp.211-214.

DOI: 10.1109/ISPSD.2016.7520815

Google Scholar

[7] H. Takahashi, A. Yamamoto, S. Aono, and T. Minato, 1200V reverse conducting IGBT,, in Proc. Int. Symp. Power Semiconductors and ICs, May 2004, pp.133-136.

DOI: 10.1109/WCT.2004.239844

Google Scholar

[8] O. Hellmund, L. Lorenz, and H. Rüthing, 1200V reverse conducting IGBTs for soft -switching applications,, China Power Electron. J., vol.5, 2005, pp.20-22.

Google Scholar

[9] K. Satoh, T. Iwagami, H. Kawafuji, S. Shirakawa, M. Honsberg, and E. Thal, A new 3A/600V transfer mold IPM with RC (reverse conducting) -IGBT,, in Proc. PCIM Europe., May 2006, p.73–78.

Google Scholar

[10] D. Werber, T. Hunger, M. Wissen, T. Schütze, M. Lassmann, B. Stemmer, V. Komarnitskyy, F. Pfirsch, A 1000A 6.5 kV Power Module Enabled by Reverse-Conducting Trench-IGBT-Technology,, in Proc. PCIM Europe., May 2015, pp.351-358.

Google Scholar

[11] H. Yano, T. Hirao, T. Kimoto, H. Matsunami, K. Asano, and Y. Sugawara, High channel mobility in inversion layers of 4H-SiC MOSFETs by utilizing (11-20) face,, IEEE Electron Device Lett., vol. 20, no. 12, 1999, pp.611-613.

DOI: 10.1109/55.806101

Google Scholar

[12] J. Senzaki, K. Kojima, S. Harada, R. Kosugi, S. Suzuki, T. Suzuki, and K. Fukuda, Excellent effects of hydrogen postoxidation annealing on inversion channel mobility of 4H-SiC MOSFET fabricated on (11-20) face,, IEEE Electron Device Lett., vol. 23, no. 1, 2002, pp.13-15.

DOI: 10.1109/55.974797

Google Scholar

[13] Y. Nanen, M. Kato, J. Suda, and T. Kimoto, Effects of nitridation on 4H-SiC MOSFETs fabricated on various crystal faces,, IEEE Trans. Electron Devices, vol. 60, no. 3, 2013, pp.1260-1262.

DOI: 10.1109/TED.2012.2236333

Google Scholar

[14] T. Kimoto and J. A. Cooper, Fundamentals of silicon carbide technology: growth, characterization, devices, and applications,, Chapter 8, Singapore: Wiley, Nov. (2014).

Google Scholar

[15] T. Nakamura, Y. Nakano, M. Aketa, R. Nakamura, S. Mitani, H. Sakairi, and Y. Yokotsuji, High performance SiC trench devices with ultra -low Ron,, in IEEE IEDM Tech. Dig., Dec. 2011, pp.599-601.

DOI: 10.1109/iedm.2011.6131619

Google Scholar

[16] R. Tanaka, Y. Kagawa, N. Fujiwara, K. Sugawara, Y. Fukui, N. Miura, M. Imaizumi, and S. Yamakawa, Impact of grounding the bottom oxide protection layer on the short-circuit ruggedness of 4H-SiC trench MOSFETs,, in Proc. Int. Symp. Power Semiconductors and ICs, Jun. 2014, p.75–78.

DOI: 10.1109/ISPSD.2014.6855979

Google Scholar

[17] A. Ichimura, Y. Ebihara, S. Mitani, M. Noborio, Y. Takeuchi, S. Mizuno, T. Yamamoto, and K. Tsuruta, 4H-SiC Trench MOSFET with Ultra-Low On-Resistance by using Miniaturization Technology,, Material Science Forum, vol.924, p.707–710, 2018.

DOI: 10.4028/www.scientific.net/MSF.924.707

Google Scholar

[18] Y. Ebihara, A. Ichimura, A. Mitani, M. Noborio, Y. Takeuchi, S. Mizuno, T.Yamamoto, and K. Tsuruta, Deep-P Encapsulated 4H-SiC Trench MOSFETs With Ultra Low RonQgd,, in Proc. Int. Symp. Power Semiconductors and ICs, May 2018, p.44–48.

DOI: 10.1109/ISPSD.2018.8393598

Google Scholar

[19] W. Sung and B. J. Baliga, Monothithically Integrated 4H-SiC MOSFET and JBS Diode (JBSFET) Using a Single Ohmic/Schottky Process Scheme,, IEEE Electron Devices Lett. vol. 37, no. 12, 2016, pp.1605-1608.

DOI: 10.1109/LED.2016.2618720

Google Scholar

[20] S. Hino, H. Hatta, K. Sadadamatsu, Y. Nagahisa, S. Yamamoto, T. Iwamatsu, Y. Yamamoto, M. Imaizumi, S. Nakata, and S. Yamakawa, Demonstration of SiC-MOSFET Embedding Schottky Barrier Diode for Inactivation of Parasitic Body Diode,, Material Science Forum, vol.897, p.477–482, 2017.

DOI: 10.4028/www.scientific.net/MSF.897.477

Google Scholar

[21] F. J. Hsu, C. T. Yen, C. C. Hung, H. T. Hung, C. Y. Lee, L. S. Lee, Y. F. Huang, T. Z. Chen, P. J. Chuang, High efficiency high reliability SiC MOSFET with monolithically integrated Schottky rectifier,, Proc. Int. Symp. Power Semiconductors and ICs, May 2017, p.45–48.

DOI: 10.23919/ISPSD.2017.7988889

Google Scholar

[22] Y. Kobayashi, H. Ishimori, A. Kinoshita, T. Kojima, M. Takei, H. Kimura, and S. Harada, Evaluation of Schottky barrier height on 4H - SiC m -face {1 -100} for schottky barrier diode wall integrated trench MOSFET, , Japanese Journal of Applied Physics, vo,56, no.4S, 2017, 04CR08 1-6.

DOI: 10.7567/JJAP.56.04CR08

Google Scholar

[23] Y. Kobayashi, N. Ohse, T.Morimoto. M.Kato, T. Kojima, M. Miyazato, M. Takei, H. Kimura, and S. Harada, "Body pin diode inactivation with low on-resistance achieved by 1 1.2kV-class 4H-SiC SWITCH-MOS, in IEEE IEDM Tech. Dig., Dec. 2017, pp.211-214.

DOI: 10.1109/iedm.2017.8268356

Google Scholar

[24] G. Romano, L. Maresca, M. Riccio, V. d'Alessandro, A. Fayyaz, and A. Castellazzi, Short-circuit failure mechanism of SiC power MOSFETs,, in Proc. Int. Symp. Power Semiconductors and ICs, May 2015, pp.345-348.

DOI: 10.1109/ISPSD.2015.7123460

Google Scholar

[25] A. Castellazzi, A. Fayyaz, L. Yang, M. Riccio, and A. Irace, Short-circuit robustness of SiC Power MOSFETs: experimental analysis,, in Proc. Int. Symp. Power Semiconductors and ICs, Jun. 2014, pp.71-74.

DOI: 10.1109/ISPSD.2014.6855978

Google Scholar

[26] X. Huang, G. Wang, Y. Li, A. Q. Huang, and B. J. Baliga, Short-circuit capability of 1200V SiC MOSFET and JFET for fault protection,, in Applied Power Electronics Conference and Exposition (APEC), 2013 Twenty-Eighth Annual IEEE, 2013, pp.197-200.

DOI: 10.1109/apec.2013.6520207

Google Scholar

[27] T.-T. Nguyen, A. Ahmed, T. Thang, and J.-H. Park, Gate oxide reliability issues of SiC MOSFETs under short-circuit operation,, IEEE Transactions on Power Electronics, vol. 30, no.5, 2015, pp.2445-2455.

DOI: 10.1109/tpel.2014.2353417

Google Scholar

[28] J. An, M. Namai, and N. Iwamuro, Experimental and theoretical analyses of gate oxide and junction reliability for 4H-SiC MOSFET under short-circuit operation,, Japanese Journal of Applied Physics, vol.55, 124102-1~4, 2016.

DOI: 10.7567/JJAP.55.124102

Google Scholar

[29] M. Namai, J. An, H. Yano and N. Iwamuro, Experimental and Numerical Demonstration and Optimized Methods for SiC Trench MOSFET Short-Circuit Capability,, in Proc. Int. Symp. Power Semiconductors and ICs, May 2017, pp.363-366.

DOI: 10.23919/ISPSD.2017.7988993

Google Scholar

[30] M. Namai, J. An, H. Yano and N. Iwamuro, Investigation of Short-circuit Failure Mechanisms of SiC MOSFETs by varying DC bus voltage,, Japanese Journal of Applied Physics, vol.57, 0740102-1~10, 2018.

DOI: 10.7567/JJAP.57.074102

Google Scholar

[31] J.An, M.Namai, H.Yano, N.Iwamuro, Y.Kobayashi, S.Harada, Methodology for Enhanced Short-Circuit Capability of SiC MOSFETs,, in Proc. Int. Symp. Power Semiconductors and ICs, May 2018, pp.391-394.

DOI: 10.1109/ISPSD.2018.8393685

Google Scholar