Phase Control of Ga2O3 Thin Films Grown by Metal-Organic Chemical Vapor Deposition

Article Preview

Abstract:

In this paper, Ga2O3 thin films were grown on c-plane sapphire substrates by metal-organic chemical vapor deposition (MOCVD). There was phase transition for samples grown with different flow rates of triethyl-gallium (TEGa) and deionized water (H2O). It is found that ε-Ga2O3 is difficult to coalesce and the phase mixture by β­Ga2O3 takes place if the flow rates of TEGa and H2O are too high. However, by using multiple-step growth method, the film became fully coalesced. High-quality ε-Ga2O3 thin film with atomically flat surface and multilayer morphology was obtained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

72-76

Citation:

Online since:

May 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Higashiwaki, K. Sasaki, H. Murakami, Y. Kumagai, A. Koukitu, A. Kuramata, T. Masui, S. Yamakoshi, Semicond.Sci. Technol. 31(3) (2016) 034001.

DOI: 10.1088/0268-1242/31/3/034001

Google Scholar

[2] M. Higashiwaki, H. Murakami, Y. Kumagai, A. Kuramata, Jpn. J. Appl. Phys. 55(12) (2016) 1202A1.

Google Scholar

[3] R. Roy, V.G. Hill, E.F. Osbom, J. Am. Chem. Soc 74 (1952) 719-722.

Google Scholar

[4] T. Onuma, S. Fujioka, T. Yamaguchi, Y. Itoh, M. Higashiwaki, K. Sasaki, T. Masui, T. Honda, J. Cryst. Growth 401 (2014) 330-333.

DOI: 10.1016/j.jcrysgro.2013.12.061

Google Scholar

[5] M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, S. Yamakoshi, Appl. Phys. Lett. 100(1) (2012) 013504.

Google Scholar

[6] D. Gogova, M. Schmidbauer, A. Kwasniewski, Crystengcomm 17(35) (2015) 6744-6752.

DOI: 10.1039/c5ce01106j

Google Scholar

[7] H.W. Kim, N.H. Kim, Mater. Sci. Eng. B 110 (2004) 34-37.

Google Scholar

[8] V. Gottschalch, K. Mergenthaler, G. Wagner, J. Bauer, H. Paetzelt, C. Sturm, U. Teschner, Phys. Status Solidi (a) 206(2) (2009) 243-249.

DOI: 10.1002/pssa.200824436

Google Scholar

[9] Y. Zhuo, Z. Chen, W. Tu, X. Ma, Y. Pei, G. Wang, Appl. Surf. Sci. 420 (2017) 802-807.

Google Scholar

[10] Y.P. Chen, X.C. Xia, H.W. Liang, Q. Abbas, Y. Liu, G.T. Du, Cryst. Growth Des. 18(2) (2018) 1147-1154.

Google Scholar

[11] H.D. Sun, K.H. Li, C.G.T. Castanedo, S. Okur, G.S. Tompa, T. Salagaj, S. Lopati, A. Genovese, X.H. Li, Cryst. Growth Des. 18(4) (2018) 2370-2376.

Google Scholar

[12] X. Xia, Y. Chen, Q. Feng, H. Liang, P. Tao, M. Xu, G. Du, Appl. Phys. Lett. 108(20) (2016) 202103.

Google Scholar

[13] I. Cora, F. Mezzadri, F. Boschi, M. Bosi, M. Caplovicova, G. Calestani, I. Dodony, B. Pecz, R. Fornari, Crystengcomm 19(11) (2017) 1509-1516.

DOI: 10.1039/c7ce00123a

Google Scholar

[14] F. Alema, B. Hertog, A. Osinsky, P. Mukhopadhyay, M. Toporkov, W.V. Schoenfeld, J. Cryst. Growth 475 (2017) 77-82.

DOI: 10.1016/j.jcrysgro.2017.06.001

Google Scholar

[15] Z. Chen, Z. Li, Y. Zhuo, W. Chen, X. Ma, Y. Pei, G. Wang, Appl. Phy. Express 11(10) (2018) 101101.

Google Scholar

[16] P. Gibart, Reports on Progress in Physics 67(5) (2004) 667-715.

Google Scholar

[17] H.Y. Playford, A.C. Hannon, E.R. Barney, R.I. Walton, Chemistry 19(8) (2013) 2803-13.

Google Scholar

[18] J. Tersoff, A.W. Denier van der Gon, R.M. Tromp, Phys Rev Lett 72(2) (1994) 266-269.

DOI: 10.1103/physrevlett.72.266

Google Scholar