Electron Mobility due to Surface Roughness Scattering in Depleted GaAs Free-Standing Thin Ribbon

Article Preview

Abstract:

Abstract:Electron mobility limited by surface roughness scattering in free-standing GaAs thin ribbon with an internal parabolic quantum well caused by surface state is investigated in detail. Based on analyzing the parabolic quantum well including the energy subband level, wave function and the confined potential profile in the thin ribbon by solving Schrödinger and Poisson equations self-consistently, the electron mobility could be investigated. Conclusion indicates that remote surface roughness (RSR) of the thin ribbon will change the two dimensional electron gas (2DEG) mobility through the medium of barrier height fluctuation of the parabolic well in atomic scale. Calculation results reveal that the 2DEG mobility decreases with increasing roughness amplitude, which is characterized in terms of the surface roughness height and the roughness lateral size.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-59

Citation:

Online since:

May 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, Nano Lett., 7, (1003) (2007).

DOI: 10.1021/nl070111x

Google Scholar

[2] Changhong Liu, Juan Antonio Zapien, Yuan Yao, Xiangmin Meng, Chun Sing Lee, Shoushan Fan, Yeshayahu Lifshitz, and Shuit Tong Lee, Adv. Mater., 15, 838(2003).

Google Scholar

[3] C.-H. Shen, H.-Y. Chen, H.-W. Lin, S. Gwo, A. A. Klochikhin and V. Yu. Davydov, Appl. Phys. Lett. 88, 253104(2006).

Google Scholar

[4] Liping Zhu, Mingjia Zhi, Zhizhen Ye, and Binghui Zhao, Appl. Phys. Lett. 88, 113106 (2006).

Google Scholar

[5] A. J. Rimberg and R.M. Westervelt, Phys. Rev. B, 40, 3970(1989).

Google Scholar

[6] Y.-M. Chang and S. Gwo, Appl. Phys. Lett., 94, 071911(2009).

Google Scholar

[7] H. Ahn, Y.-P. Ku, Y.-C. Wang, and C.-H. Chuang, APPL. PHYS. LETT. 91, 163105(2007).

Google Scholar

[8] Michael H. Huang, Samuel Mao, Henning Feick, Haoquan Yan, Yiying Wu, Hannes Kind, Eicke Weber, Richard Russo and Peidong Yang, SCIENCE, 292, 1897(2001).

DOI: 10.1126/science.1060367

Google Scholar

[9] Gokula Kannan, Dragica Vasileska, J. Appl. Phys., 122, 114303 (2017).

Google Scholar

[10] Chao-Wei Wu, Yuh-Renn Wu, AIP Advances 6, 115201 (2016).

Google Scholar

[11] Yu Cao, Huili Xing, and Debdeep Jena, Appl. Phys. Lett. 97, 222116 (2010).

Google Scholar

[12] Punit Kumar Dhawan, Meher Wan, S. K. Verma, D. K. Pandey, and R. R. Yadav, J. Appl. Phys., 117, 074307 (2015).

Google Scholar

[13] Zheng Wei Pan, Zu Rong Dai and Zhong Lin Wang, SCIENCE, 291, 1947(2001).

Google Scholar

[14] Kang-Xian Guo and Shi-Wei Gu, Phys. Rev. B, 47, 16322(1993).

Google Scholar

[15] Ying He, Zhuangqi Cao and Qishun Shen, J. Phys. A: Math. Gen. 38, 5771(2005).

Google Scholar

[16] H. Gilboa, M. E. Motamedi, and P. Das, APPLIED PHYSICS LETTERS 90, 153106(2007).

Google Scholar

[17] P. E. Gregory, W. E. Spicer, S. Ciracit and W. A. Harrison, Appl. Phys. Lett., 25, 512(1974).

Google Scholar

[18] B. Liu, Y. W. Lu, G. R. Jin, Y. Zhao, X. L. Wang, Q. S. Zhu, and Z. G. Wang, Appl. Phys. Lett. 97, 262111(2010).

Google Scholar

[19] F. T. Vasko and O. E. Raichev, Phys. Rev. B, 50, 12195(1994).

Google Scholar

[20] H. Sakaki, T. Noda, K. Hirakawa, M. Tanaka, and T. Matsusue, Appl. Phys. Lett., 51, 1934(1987).

Google Scholar

[21] Shun Lien Chuang, Physics of Optoelectronic Devices, 53, (Wiley, New York, 1995).

Google Scholar

[22] B. Jogai, J. Appl. Phys., 91, 3721(2002).

Google Scholar

[23] B. Jogai, J. Appl. Phys., 93, 1631(2003).

Google Scholar

[24] D. K. Ferry, S. M. Goodnick, and J. Bird, Transport in Nanostructures, 2nd ed. (Cambridge University Press, Cambridge, England, 2009).

Google Scholar

[25] Jasprit Singh, Semiconductor Optoelectronics: Physics and Technology, (Mcgraw-Hill Book Co., Singapore, 1995).

Google Scholar