Development of SOI FETs Based on Core-Shell Si/SiC Nanowires for Sensing in Liquid Environments

Article Preview

Abstract:

Core–shell Si/SiC nanostructures appear as promising building blocks for sensing applications, thanks to the high chemical stability of SiC coupled with the semiconducting properties of Si. In order to optimize the fabrication process of such structures, Si nanowires were coated with a thin SiC layer, and integrated as back-gated field-effet transistors. Two approaches for the fabrication of the SiC shell were then investigated. The first approach involves chemical vapor deposition of amorphous SiC on Si nanowires, without the need for masking; the second approach involves carbonization of Si surfaces to produce a thin crystalline SiC layer, but requires a larger thermal budget. The resulting structures were analyzed using high-resolution transmission electron microscopy (HR-TEM), and the devices were characterized electrically. Electrical characterization shows that the carbonization approach induces a dramatic decrease in drain-to-source current associated with gate leakage, whereas the electrical performances were preserved in the case of chemical deposition.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

701-706

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Ahmad, T. Mahmoudi, M. S. Ahn, Y. B. Hahn, Recent advances in nanowires-based field-effect transistors for biological sensor applications, Biosens. Bioelectron. 100 (2018) 312-325.

DOI: 10.1016/j.bios.2017.09.024

Google Scholar

[2] W. Zhou, X. Dai, T. M. Fu, C. Xie, J. Liu, C. M. Lieber, Long Term Stability of Nanowire Nanoelectronics in Physiological Environments, Nano Lett. 14 (2014) 1614–1619.

DOI: 10.1021/nl500070h

Google Scholar

[3] R. Bange, E. Bano, L. Rapenne, S. Labau, B. Pelissier, V. Stambouli, et al., Chemical Stability of Si-SiC Nanostructures under Physiological Conditions, Mater. Sci. Forum 897 (2017) 638-641.

DOI: 10.4028/www.scientific.net/msf.897.638

Google Scholar

[4] R. Bange, E. Bano, L. Rapenne, V. Stambouli, Superior long term stability of SiC nanowires over Si nanowires under physiological conditions, Mater. Res. Express 6 (2018) 15013.

DOI: 10.1088/2053-1591/aae32a

Google Scholar

[5] L. Fradetal, E. Bano, G. Attolini, F. Rossi, V. Stambouli, A silicon carbide nanowire field effect transistor for DNA detection, Nanotechnology 27 (2016) 235501.

DOI: 10.1088/0957-4484/27/23/235501

Google Scholar

[6] J. P. Alper, M. Vincent, C. Carraro, R. Maboudian, Silicon carbide coated silicon nanowires as robust electrode material for aqueous micro-supercapacitor, Appl. Phys. Lett. 100 (2012) 163901.

DOI: 10.1063/1.4704187

Google Scholar

[7] S. E. Saddow, C. L. Frewin, M. Reyes, J. Register, M. Nezafati, S. Thomas, 3C-SiC on Si: A Biocompatible Material for Advanced Bioelectronic Devices, ECS Transactions 61 (2014) 101-111.

DOI: 10.1149/06107.0101ecst

Google Scholar

[8] M. Ollivier, L. Latu-Romain, B. Salem, L. Fradetal, V. Brouzet, J. H. Choi, E. Bano, Integration of SiC-1D nanostructures into nano-field effect transistors, Mater. Sci. Semicond. Process. 29 (2014) 218–222.

DOI: 10.1016/j.mssp.2014.03.020

Google Scholar

[9] X. Duan, Y. Li, N. K. Rajan, D.A. Routenberg, Y. Modis, M. A. Reed, Quantification of the affinities and kinetics of protein interactions using silicon nanowire biosensors, Nat. Nanotechnol. 7 (2012) 401–407.

DOI: 10.1038/nnano.2012.82

Google Scholar

[10] T. Adam, U. Hashim, Highly sensitive silicon nanowire biosensor with novel liquid gate control for detection of specific single-stranded DNA molecules, Biosens. Bioelectron. 67 (2015) 656-661.

DOI: 10.1016/j.bios.2014.10.005

Google Scholar

[11] M. Ollivier, L. Latu-Romain, M. Martin, S. David, A. Mantoux, E. Bano, et al., Si–SiC core–shell nanowires, J. Cryst. Growth 363 (2013) 158-163.

DOI: 10.1016/j.jcrysgro.2012.10.039

Google Scholar

[12] S. Nishino, J. A. Powell, H. A. Will, Production of large‐area single‐crystal wafers of cubic SiC for semiconductor devices, Appl. Phys. Lett. 42 (1983) 460-462.

DOI: 10.1063/1.93970

Google Scholar

[13] M. Bosi, G. Attolini, M. Negri, C. Frigeri, E. Buffagni, C. Ferrari, et al., Optimization of a buffer layer for cubic silicon carbide growth on silicon substrates, J. Cryst. Growth 383 (2013) 84-94.

DOI: 10.1016/j.jcrysgro.2013.08.005

Google Scholar