Compact Modeling of SiC and GaN Junction FETs at High Temperature

Article Preview

Abstract:

High temperatures and other harsh environments are domains of predilection for Junction FETs, particularly when wide band-gap semiconductors such as SiC or GaN are used. The present work describes the new compact model of double gate (DG) JFETs which is compared to TCAD simulations of SiC and GaN JFETs over a wide temperature range up to 500oC. The compact model is shown to be predictive of device behavior, for static (current-voltage) as well as dynamic (capacitance-voltage) behavior of long-channel DG JFETs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

683-687

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Fernandez-Martinez, D. Flores, S. Hidalgo, D. Quirion, R. Dura, M. Ullan, First fabrication of a silicon vertical JFET for power distribution in high energy physics applications,, Nuclear Inst. and Methods in Physics Research A, 877, 269–277, (2018).

DOI: 10.1016/j.nima.2017.08.043

Google Scholar

[2] S. Popelka, P. Hazdra, R. Sharma, V. Zahlava, J. Vobecky, Effect of neutron irradiation on high voltage 4H-SiC vertical JFET characteristics: characterization and modeling,, IEEE Trans. Nuclear Science, 61(6), 3030–3036, (2014).

DOI: 10.1109/tns.2014.2358957

Google Scholar

[3] D. Ji, S. Chowdhury, Design of 1.2 kV power switches with low RON using GaN-based vertical JFET,, IEEE Trans. Electron Devices, 62(8), 2571–2578, (2015).

DOI: 10.1109/ted.2015.2446954

Google Scholar

[4] E. Santi, K. Peng, H. A. Mantooth, J. L. Hudgins, Modeling of Wide-Bandgap Power Semiconductor Devices—Part II,, IEEE Trans. Electron Devices, 62(2), 434-442, (2015).

DOI: 10.1109/ted.2014.2373373

Google Scholar

[5] N. Makris, F. Jazaeri, J.-M. Sallese, R. K. Sharma, M. Bucher, Charge-based modeling of long-channel symmetric double-gate junction FETs – Part I: Drain current and transconductances,, IEEE Trans. Electron Devices, 65(7), 2744–2750, (2018).

DOI: 10.1109/ted.2018.2838101

Google Scholar

[6] N. Makris, F. Jazaeri, J.-M. Sallese, M. Bucher, Charge-based modeling of long-channel symmetric double-gate junction FETs – Part II: Total charges and transcapacitances,, IEEE Trans. Electron Devices, 65(7), 2751–2755, (2018).

DOI: 10.1109/ted.2018.2838090

Google Scholar

[7] A. Grekov, Z. Chen, E. Santi, J. Hudgins, A. Mantooth, D. Sheridan, J. Casady, Parameter extraction procedure for high power SiC JFET,, IEEE Energy Conversion Congress and Exposition (ECCE), 1466–1471, (2009).

DOI: 10.1109/ecce.2009.5316253

Google Scholar

[8] E. Platania, Z. Chen, F. Chimento, A. E. Grekov, R. Fu, L. Lu, A. Raciti, J. L. Hudgins, H. A. Mantooth, D. C. Sheridan, J. Casady, E. Santi, A Physics-Based Model for a SiC JFET Accounting for Electric-Field-Dependent Mobility,, IEEE Trans. Industry Applications, 47(1), 199–211, (2011).

DOI: 10.1109/tia.2010.2090843

Google Scholar

[9] D. E. Ward, R. W. Dutton, A charge-oriented model for MOS transistor capacitances,, IEEE J. Solid-State Circuits, 13(5), 703-708, (1978).

DOI: 10.1109/jssc.1978.1051123

Google Scholar

[10] S. Banas, J. Dobes, V. Panko, Techniques of JFET gate capacitance modeling,, World Congress on Engineering and Computer Science (WCECS), vol. II, 5 p., (2016).

Google Scholar

[11] N. Makris; M. Bucher; F. Jazaeri, J.-M. Sallese, JFETlab: An Online Simulation Tool for Double Gate Symmetrical JFETs,, https://nanohub.org/resources/jfetlab, (2018).

Google Scholar

[12] M. Roschke, F. Schwierz, Electron mobility models for 4H, 6H, and 3C SiC,, IEEE Trans. Electron Devices, 48(7), 1442–1447, (2001).

DOI: 10.1109/16.930664

Google Scholar

[13] D. Stefanakis, K. Zekentes, TCAD models of the temperature and doping dependence of the bandgap and low field carrier mobility in 4H-SiC,, Microelectronics Engineering, 116, 65–71, (2014).

DOI: 10.1016/j.mee.2013.10.002

Google Scholar