[1]
A. Philipossian and L. Mustapha. Journal of The Electrochemical Society, 151(7), 2001.
Google Scholar
[2]
G. M. Burdick, N. S. Berman, and S. P. Beaudoin. Journal of The Electrochemical Society, 150(10):G658-G665, 2003.
Google Scholar
[3]
K.G. Bahten, T. Zhang, H. Liang, and J. Lee. In The International Chemical Mechanical Planarization for ULSI Multilevel Interconnection Conference (CMP-MIC), March 2002.
Google Scholar
[4]
J. Visser. Surface and colloid science, volume 8, pages 3-84. John Wiley & Sons, 1976.
Google Scholar
[5]
P. Ganatos, R. Pfeffer, and S. Weinbaum. Journal of Fluid Mechanics, 99(4):755-783, 1980.
Google Scholar
[6]
S. Timoshenko and S. Woinowsky-Krieger. Theory of Plates and Shells. McGraw-Hill Book Company, 1989.
Google Scholar
[7]
J. Happel and H. Brenner. Low Reynolds number hydrodynamics: with special applications to particulate media. Kluwer Dordrecht, 5th edition, 1991.
Google Scholar
[8]
K. Xu, R. Vos, G. Vereecke, M. Lux, W. Fyen, F. Holsteyns, K. Kenis, P.W. Mertens, M.M. Heyns, and C. Vinckier. Solid State Phenomena, 92:161-164.
DOI: 10.4028/www.scientific.net/ssp.92.161
Google Scholar
[9]
K. Xu, R. Vos, S. Arnauts, W. Schaetzlein, U. Speh, P.W. Mertens, and M.M. Heyns. In Proceedings of 7th International Symposium on Cleaning Technology in Semiconductor Device Manufacturing - ECS PV 2001-26, 2001.
Google Scholar
[10]
K. Xu, R. Vos, G. Vereecke, P.W. Mertens, M.M. Heyns, and C. Vinckier. In Proceedings of 8th International Symposium on Cleaning Technology in Semiconductor Device Manufacturing - ECS PV 2003-26, pages 137-144, 2004. Fvdw-s+Fel-s+Fload as wafer Ff-b Fvdw-b + Fel-b Particle Ff-s point�around�which rolling�occurs FD R rolling lifting Fig. 1: Schematic description of the forces on a particle and the incipient motions of the detachment of a particle from a wafer during scrubbing: lifting and rolling.4 Table 1: Overview of the forces and moments on a 34-nm silica particle on a nitride substrate during scrubbing. Calculated at pressure 4.4 kPa, velocity 0.38 m/s, pH ≈ 10. Force (N) Moment (N m) Note Adhesion, in both contact and non-contact modes Fvdw-s 6.7 × 10−10 1.6 × 10−18 as = 2.4 nm Fel-s −4.2 × 10−10 −1.0 × 10−18 - Fload 4.0 × 10−12 9.3 × 10−21 - Removal, in non-contact mode mode, h ≥ 34 nm Fvdw-b ≤ 1.2 × 10−10 ≤ 2.7 × 10−19 z ≥ 0.4 nm Fel-b −2.6 × 10−10 −4.7 × 10−19 z ≥ 0.4 nm FD 1.5 × 10−10 3.5 × 10−18 fD-max.=10 TD - 1.7 × 10−19 - Removal, in contact mode mode, h ≈ 0 nm Ff-b 7.7 × 10−14 2.6 × 10−21 apb = 3.0 nm Fvdw-b 2.8 × 10−10 6.5 × 10−19 z = 0.4 nm Fel-b −2.6 × 10−10 −4.7 × 10−19 z = 0.4 nm 0 50 100 150 200 2500 0.1 0.2 0.3 0.4 Avg. fluid film thickness (nm) Brush�linear�velocity��(m/s) (a) (b) 0 200 400 600 800 0 4 8 Avg. fluid film thickness (nm) Average�pressure��(kPa) Fig. 2: Average film thickness vs. (a) average brush/substrate pressure at velocity 0.38 m/s, (b) brush/wafer relative velocity at pressure 4.4 kPa. (a) (b) (c) (d) <�0.92 <�0.94 <�1 <�0.99 <�0.96 (Normalized) s PSC <�0.92 <�0.94 <�1 <�0.99 <�0.96 (Normalized) s PSC Fig. 3: The particle-surface-concentration pattern of a contaminated nitride wafer before lifting (a - 34-nm particles, c - 78-nm particles,) and after lifting tests (b - 34- nm, and d - 78 nm). Lifting conditions: 10 times on/off the substrate in 60 s at pressure 4.0 kPa. nonbrushed nonbrushed brushed area brushed area nonbrushed nonbrushed brushed area brushed area 0 0.1 0.2 -100 -50 0 50 100 velocity (m/s) radial�distance�(mm) PRE�(%) 66-100 33-66 0-33 (a) (b) Fig. 4: PRE vs. brush/wafer relative velocity. (a) PRE map after scrubbing for 2 seconds with brush speed 30 rpm, wafer speed 10 rpm, and average pressure 4.0 kPa. (b) Calculated relative velocity vs. radial distance to wafer center for the same condition.
Google Scholar