Intrinsic Point Defects in Silicon: a Unified View from Crystal Growth, Wafer Processing and Metal Diffusion

Article Preview

Abstract:

There are several phenomena where the properties of vacancies and self-interstitials in silicon are manifested in straightforward ways. These include the formation of grown-in microdefects, the diffusion of metals (such as Au, Zn), self-diffusion and the installation of vacancy depth profiles in wafers by Rapid Thermal Annealing. Combining features extracted from the analysis of these phenomena, it is possible to define the diffusivities and equilibrium concentrations of the intrinsic point defects. Their diffusivities are remarkably high, and have weak temperature dependence. Their equilibrium concentrations are very low, and have strong temperature dependence.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 108-109)

Pages:

1-10

Citation:

Online since:

December 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.V. Voronkov: J. Crystal Growth Vol. 59 (1982), p.625.

Google Scholar

[2] V.V. Voronkov and R. Falster: J. Crystal Growth Vol. 194 (1998), p.76.

Google Scholar

[3] V.V. Voronkov and R. Falster: J. Appl. Physics Vol. 86 (1999), p.5975.

Google Scholar

[4] H. Bracht, E.E. Haller and R. Clark-Felps: Phys. Rev. Letters Vol. 81 (1998), p.393.

Google Scholar

[5] T. Saishoji, K. Nakamura, N. Nakajima, T. Yokoyama, F. Ishikawa and J. Tomioka: High Purity Silicon Vol. 98-13 (1998), p.28.

Google Scholar

[6] V.V. Voronkov: Materials Science and Engineering Vol. B56 (1999), p.69.

Google Scholar

[7] V.V. Voronkov and R. Falster: J. Crystal Growth Vol. 273 (2005), p.412.

Google Scholar

[8] K. Nakamura, T. Saishoji and J. Tomioka: High Purity Silicon Vol. PV2004-5 (2004), p.237.

Google Scholar

[9] R. Falster, V.V. Voronkov and F. Quast: Phys. Stat. Sol. Vol. B222 (2000), p.219.

Google Scholar

[10] D. Grunebaum, Th. Czekalla, N.A. Stolwijk, H. Mehrer, I. Yonenaga and K. Sumino: Appl. Phys. Vol. A53 (1991), p.65.

Google Scholar

[11] N.A. Stolwijk, B. Schuster, J. Holzl, H. Mehrer and W. Frank: Physica Vol. 116B (1983), p.335.

Google Scholar

[12] H. Bracht and H. Overhof: Phys. Stat. Sol. Vol. A158 (1996), p.47.

Google Scholar

[13] H. Bracht, N.A. Stolwijk and H. Mehrer: Phys. Rev. Vol. B52 (1995), p.16542.

Google Scholar

[14] N.A. Stolwijk, B. Schuster and J. Holzl: Appl. Phys. Vol. A33 (1984), p.133.

Google Scholar

[15] J. Hauber, N.A. Stolwijk, L. Tapfer, H. Mehrer and W. Frank: J. Phys. C: Solid State Phys. Vol. 19 (1986) p.5817.

DOI: 10.1088/0022-3719/19/29/007

Google Scholar

[16] F. Morehead, N.A. Stolwijk, W. Meyberg and U. Gosele: Appl. Phys. Letters Vol. 42 (1983), p.690.

Google Scholar

[17] K. Compaan and Y. Haven: Trans. Faraday Soc. Vol. 52 (1956), p.786.

Google Scholar

[18] A. Ural, P.B. Griffin and J.D. Plummer: Appl. Phys. Letters Vol. 73 (1998), p.1706.

Google Scholar

[19] A. Ural, P.B. Griffin and J.D. Plummer: Phys. Rev. Letters Vol. 83 (1999), p.3454.

Google Scholar

[20] R. Falster, M. Pagani, D. Gambaro, M. Cornara, M. Olmo, G. Ferrero, P. Pichler and M. Jacob: Solid State Phenomena Vol. 57-58 (1997), p.129.

DOI: 10.4028/www.scientific.net/ssp.57-58.129

Google Scholar

[21] V.V. Voronkov and R. Falster: J. Electrochem. Soc. Vol. 149 (2002), p. G167.

Google Scholar

[22] G.D. Watkins: J. Phys. Soc. Japan Vol. 18 Suppl. II (1963), p.22.

Google Scholar

[23] T. Sinno, R.A. Brown, E. Dornberger and W. von Ammon: J. Electrochem. Soc. Vol. 145 (1998), p.303.

Google Scholar

[24] K. Nakamura, T. Saishoji and J. Tomioka: Semiconductor Silicon Vol. 2002- 2 (2002), p.554.

Google Scholar

[25] V.V. Voronkov and R. Falster: High Purity Silicon Vol. PV2002-20 (2002), p.16.

Google Scholar