Passivation of Ge Nanocrystals in SiO2

Article Preview

Abstract:

Nanocrystals have attracted considerable attention in recent years because of their potential applications as a light source in Si technology. From theory Ge nanocrystals are expected to have better luminescence properties than Si nanocrystals. In this study we have compared Ge nanocrystals produced both in PE-CVD deposited and magnetron sputtered SiO2 doped with Ge during deposition to concentrations between 3-9 at.%, followed by high temperature treatment at temperatures between 600 and 1100°C. The nanocrystals were structurally characterized by Rutherford backscattering spectrometry (RBS), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR). The interface of the nanocrystals was passivated by use of alnealing, while the effect of the passivation was monitored by photoluminescence (PL)

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 108-109)

Pages:

33-38

Citation:

Online since:

December 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Maeda, E. Suzuki, I. Sakata, M. Yamanaka, K. Ishii: Nanotechnology vol. 10 (1999) p.127.

Google Scholar

[2] B. Garrido, M. López, A. Pérez-Rodríguez, C. García, P. Pellegrino, R. Ferré, J. A. Moreno, J. R. Morante, C. Bonafos, M. Carrada, A. Claverie, J. de la Torre and A. Souifi: Nucl. Inst. Meth B vol. 216 (2004) p.213.

Google Scholar

[3] N. Daldosso, M. Luppi, S. Ossicini, E. Degoli, R. Magri, G. Dalba, P. Fornasini, R. Grisenti, F. Rocca, L. Pavesi, S. Boninelli, F. Priolo, C. Spinella and F. Iacona: Phys. Rev. B vol. 68 (2003) p.085327.

DOI: 10.1103/physrevb.68.085327

Google Scholar

[4] M. Cazzanelli, D. Navarro-Urriós, F. Riboli, N. Daldosso, L. Pavesi, J. Heitmann, L. X. Yi, R. Scholz, M. Zacharias and U. Gösele: J. Appl. Phys. vol. 96, (2004) p.3164.

DOI: 10.1063/1.1781770

Google Scholar

[5] H. -Ch. Weissker, J. Furtmüller and F. Bechstedt: Phys. Rev. B vol. 65 (2001) 155328.

Google Scholar

[6] A.R. Wilkinson and R.G. Elliman: Phys. Rev. B. vol. 68 (2003) p.155302.

Google Scholar

[7] A.R. Wilkinson and R.G. Elliman: Appl. Phys. Lett. vol. 83 (2003) p.5512.

Google Scholar

[8] T. P. Leervad Pedersen, J. Skov Jensen, J. Chevallier, B. Bech Nielsen, A. Nylandsted Larsen, O. Hansen and J. M. Jensen: Submitted to Applied physics A.

DOI: 10.1007/s00339-005-3331-0

Google Scholar

[9] J. Skov Jensen, T. P. Leervad Pedersen, R. Pereira, J. Chevallier, J. Lundsgaard Hansen, B. Bech Nielsen and A. Nylandsted Larsen: Submitted to J. Appl. Phys.

DOI: 10.1007/s00339-005-3331-0

Google Scholar

[10] M. E. Zvanut, W.E. Carlos, M.E. Twigg, R.E. Stahlbush and D.J. Godbey: J. Vac. Sci. Tech. B vol. 10(4) (1992) p. (2026).

Google Scholar

[11] K. Toshikiyo, M. Tokunaga, S. Takeoka, M. Fujii, S. Hayashi: J. Appl. Phys. Vol. (89) (2001) p.4917.

Google Scholar

[12] K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma and A. Polman: Appl. Phys. Lett. vol. 68 (1996) p.2511.

Google Scholar

[13] M. J. A. Dood, J. Knoester, A. Tip and A. Polman: Phys. Rev. B vol. 71 (2005) p.115102.

Google Scholar

[14] P. G. Kik and A. Polman: J. Appl. Phys. vol. 88 (2000) p. (1992).

Google Scholar

[15] D. L. Griscom: Journal of Non-Crystalline Solids vol. 73 (1985) p.51.

Google Scholar

[16] Y. M. Niquet, G. Allan, C. Delerue and M. Lannoo: Appl. Phys. Lett. vol. 77 (2000) p.1182.

Google Scholar

[17] S. Takaoka, M. Fujii, S. Hayashi and K Yamamoto: Phys. Rev. B vol. 58 (1998) p.7921.

Google Scholar