Stability of Emission Properties of Silicon Nanostructures

Article Preview

Abstract:

The aging process of silicon nanostructures obtained by magnetron sputtering and electrochemical etching is investigated by photoluminescence and Raman scattering methods. It is shown that oxidation of silicon crystallites takes place in both types of structures and results in appearance of additional emission bands. However the degree of oxidation in etched structures exceeds significantly this value for sputtered samples. It is found that the intensity and spectral position of the emission band caused by exciton recombination in Si crystallites do not change practically during aging in sputtered structures in contrast to etched ones. It is shown that the oxidation of silicon amorphous phase occur during aging in sputtered structures.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 108-109)

Pages:

59-64

Citation:

Online since:

December 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. H. Beckmann: Surf. Sci. Vol. 3 (1965), p.314.

Google Scholar

[2] G. G. Qin, H. Z. Song, B. R. Zhang, J. Lin, J. Q. Duan, and G. Q. Yao: Phys. Rev. B Vol. 54 (1996), p.2548.

Google Scholar

[3] D. I. Kovalev, I. D. Yarostietzkii and T. Muschik: Appl. Phys. Lett. Vol. 64 (1994) p.214; L. Tsybeskov, Yu. V. Vandyshev and P. M. Fauchet: Phys. Rev. B. Vol. 49 (1994), p.7821.

Google Scholar

[4] A. G. Cullis, L. T. Canham and P. D. J. Calcott, J. Appl. Phys. Vol. 82 (1997), p.909.

Google Scholar

[5] S. M. Prokes: Appl. Phys. Lett. 62 (1993), p.3244.

Google Scholar

[6] S. M. Prokes, O. J. Glembocki, V. M. Bermudez, R. Kaplan, L. E. Friedersdorf and P. C. Searson: Phys. Rev. B Vol. 45 (1992), p.13788.

Google Scholar

[7] T.V. Torchynska, M. Morales Rodriguez, F.G. Bacarril-Espinoza, N.E. Korsunskaya, L. Yu. Khomenkova and L.V. Scherbina: Phys. Rev. B Vol. 65 (2002), p.115313 (8 pages).

Google Scholar

[8] N. E. Korsunskaya, E. B. Kaganovich, L. Yu. Khomenkova, B. M. Bulakh, B. R. Dzhumaev, G. V. Beketov, and E.G. Manoilov: Appl. Surf. Sci. Vol. 166 (2000), p.349.

DOI: 10.1016/s0169-4332(00)00448-7

Google Scholar

[9] I. H Campbell and P.M. Fauchet, Solid State Communs. Vol. 58 (1986), p.739.

Google Scholar

[10] C. Tsai, K.H. Li, D.S. Kinosky, R. -Z. Qian, T. -C. Hsu, J.T. Irby, S.K. Banerjee, A.F. Tasch, Joe C. Campbell: Appl. Phys. Lett. Vol. 60 (1992), p.1700.

DOI: 10.1063/1.107190

Google Scholar

[11] L. Khomenkova, N. Korsunska, V. Yukhymchuk, B. Jumayev, T. Torchynska, A. Vivas Hernandez, A. Many, Y. Goldstein, E. Savir and J. Jedrzejwski: J. Lumin. Vol. 102-103 (2003), p.705.

DOI: 10.1016/s0022-2313(02)00628-2

Google Scholar

[12] L. Khomenkova, N. Korsunska, M. Sheinkman, T. Stara, T.V. Torchynska and A. Vivas Hernandez: J. Lumin (2005), in press.

DOI: 10.1016/j.jlumin.2005.02.014

Google Scholar

[13] V. Bratus', V. Yukhimchuk, L. Berezhinskii, M. Valakh, I. Vorona, I. Indutnyi, T. Petrenko, P. Shepelyavyi and I. Yanchuk: Semiconductors Vol. 35 (2001), p.821.

DOI: 10.1134/1.1385719

Google Scholar

[14] M. Baran, B. Bulakh, N. Korsunska, L. Khomenkova, and J. Jedrzejewski: Eur. Phys. J. Appl. Phys. Vol. 27 (2004), p.285.

DOI: 10.1051/epjap:2004089

Google Scholar

[15] M.E. Kompan, I.Y. Shabanov, Semiconductors, 29 (1995) 1859; B.M. Kostishko, V.S. Appolonov, S. Ya. Salomatin, A. Ye. Kostishko, Pis'ma v ZhTF Vol. 30 (2004), p.1.

Google Scholar

[16] M. Baran, B. Bulakh, N. Korsunska, L. Khomenkova, V. Yukhymchuk and M. Sheinkman. Semiconductor Physics, Quantum Electronics and Optoelectronics Vol. 6 (2003), p.282.

Google Scholar

[17] P. Gupta, A.C. Dilon, A.S. Bracker, S.M. George: Surf. Sci. Vol. 245 (1991), p.360.

Google Scholar

[18] N.E. Korsunskaya, N.P. Baran, B.M. Bulakh, V.P. Papusha, L. Yu. Khomenkova, V.A. Yukhymchuk, Izvestiya RAN., Seriya Fizicheskaya Vol. 2 (2003), p.223.

Google Scholar