Microstructures and Dielectric Properties of CaCu3Ti4O12 Polycrystalline Ceramics

Article Preview

Abstract:

We report important factors affecting the dielectric properties of CaCu3Ti4O12 (CCTO) polycrystalline ceramics prepared by the conventional solid-state ceramic process. The relative dielectric constants (εr) up to several thousands (~ 3,000 at 1 kHz) were gradually increased with increasing the sintered density of samples in the case that no exaggerated grain growth occurred. An abrupt increase in εr values were, however, accompanied by the formation of abnormally grown large grains, and thus with increasing the population of abnormally grown grains, which could be achieved by a prolonged sintering at 1060°C, the εr values were remarkably increased from several thousands to ~105. Optimally processed CCTO sample exhibited a very high εr of ~ 90,000 at 1 kHz.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 124-126)

Pages:

143-146

Citation:

Online since:

June 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. A. Subramanian, D. Li, N. Duan, B. A. Reisner, A. W. Sleight, J. Solid State Chem. 151, 323 (2000).

Google Scholar

[2] C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, A. P. Ramirez, Science 293, 673 (2001).

Google Scholar

[3] C. C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A. P. Ramirez, Phys. Rev. B 67, 092106 (2003).

Google Scholar

[4] A. P. Ramirez, M. A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S. M. Shapiro, Solid State Commun. 115, 217 (2000).

DOI: 10.1016/s0038-1098(00)00182-4

Google Scholar

[5] D. C. Sinclair, T. B. Adams, F. D. Morrison, A. R. West, Appl. Phys. Lett. 80, 2153 (2002).

Google Scholar

[6] T. B. Adams, D. C. Sinclair, A. R. West, Adv. Mater. 14, 1321 (2002).

Google Scholar

[7] P. Lunkenheimer, R. Fichtl, S. G. Ebbinghaus, A. Loidl, Phys. Rev. B 70, 172102 (2004).

Google Scholar

[8] G. Chiodelli, V. Massarotti, D. Capsoni, M. Bini, C. B. Azzoni, M. C. Mozzati, P. Lupotto, Solid state Commun. 132, 241 (2004).

DOI: 10.1016/j.ssc.2004.07.058

Google Scholar

[9] J. L. Zhang, P. Zheng, C. L. Wang, M. L. Zhao, J. C. Li, J. F. Wang, Appl. Phys. Lett. 87, 142901 (2005).

Google Scholar

[10] J. Liu, C-g. Duan, W. N. Mei, J. Appl. Physics 98, 093703 (2005).

Google Scholar

[11] B. A. Bender, M. -J. Pan, Mater. Sci. and Eng. B 117, 339 (2005).

Google Scholar

[12] G. Zang, J. Zhang, P. Zheng, J. Wang, C. Wang, J. Phys. D: Appl. Phys. 38, 1824 (2005).

Google Scholar

[13] V. Brize, G. Gruener, J. Wolfman, K. Fatyeyeva, M. Tabellout, M. Gervais, F. Gervais, Mater. Sci. and Eng. B 129, 135 (2006).

DOI: 10.1016/j.mseb.2006.01.004

Google Scholar

[14] Y. Lin, Y. B. Chen, T. Garret, S.W. Liu, C. L. Chen, L. Chen, R. P. Bontchev, A. Jacobson, J. C. Jiang, E. I. Meletis, J. Horwitz, H. -D. Wu, Appl. Phys. Lett. 81, 631 (2002).

DOI: 10.1063/1.1490624

Google Scholar

[15] W. Si, E. M. Cruz, P. D. Johnson, P. W. Barnes, P. Woodward, A. P. Ramirez, Appl. Phys. Lett. 81, 2056 (2002).

Google Scholar

[16] Y. L. Zhao, G. W. Pan, Q. B. Ren, Y. G. CaO, L. X. Feng, Z. K. Jiao, Thin Solid Films 445, 7 (2003).

Google Scholar

[17] L. Fang, M. Shen, Thin Solid Films 440, 60 (2003).

Google Scholar