Epitaxial Growth and Anisotropic Dielectric Properties of La-Doped Bi4Ti3O12 Thin Films

Article Preview

Abstract:

To investigate the anisotropic dielectric properties of layer-structured bismuth-based ferroelectrics along different crystal directions, we fabricate devices along different crystal orientations using highly c-axis oriented Bi3.25La0.75Ti3O12 (BLT) thin films on (001) LaAlO3 (LAO) substrates. Experimental results have shown that the dielectric properties of the BLT films are highly anisotropic along different crystal directions. The dielectric constants (1MHz at 300 K) are 358 and 160 along [100] and [110], respectively. Dielectric nonlinearity is also detected along these crystal directions. On the other hand, a much smaller dielectric constant and no detectable dielectric nonlinearity in a field range of 0-200 kV/cm are observed for films along [001] when c-axis oriented SRO is used as the bottom electrode.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 124-126)

Pages:

177-180

Citation:

Online since:

June 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Aurivillius, Ark Kemi 1, 463 (1950); 1, 499 (1950); 2, 519 (1951).

Google Scholar

[2] E. C. Subbarao, Phys. Rev. 122, 804 (1961).

Google Scholar

[3] C. A-Paz de Araujo, J. D. Cuchiaro, L. D. Mcmillan, M. C. Scott, and J. F. Scott, Nature 374, 627 (1995).

Google Scholar

[4] B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo, Nature 401, 682 (1999).

Google Scholar

[5] Y. Shimakawa, Y. Kubo, Y. Tauchi, H. Asano, T. Kamiyama, F. Izumi, and Z. Hiroi, Appl. Phys. Lett. 79, 2791 (2001).

DOI: 10.1063/1.1410877

Google Scholar

[6] C. H. Kim, J. K. Lee, H. S. Suh, J. Y. Yi, K. S. Hong, and T. S. Hahn, Jpn. J. Appl. Phys. 41, 1495 (2002).

Google Scholar

[7] H. N. Lee, D. Hesse, N. Zakharov, and U. Gosele, Science 296, 2006 (2002).

Google Scholar

[8] H. N. Lee and D. Hesse, Appl. Phys. Lett. 80, 1040 (2002).

Google Scholar

[9] Y. M. Sun, Y. C. Chen, J. Y. Gan, and J. C. Hwang, Appl. Phys. Lett. 81, 3221 (2002).

Google Scholar

[10] T. Sakai, T. Watanabe, H. Funakubo, K. Saito, and M. Osada, Jpn. J. Appl. Phys. Part 1-Regul. Pap. Short Notes Rev. Pap. 42, 166 (2003).

Google Scholar

[11] T. Watanabe, H. Funakubo, K. Saito, T. Suzuki, M. Fujimoto, M. Osada, Y. Noguchi, and M. Miyayama, Appl. Phys. Lett. 81, 1660 (2002).

Google Scholar

[12] Q. X. Jia, X. D. Wu, S. R. Foltyn, and P. Tiwari, Appl. Phys. Lett. 66, 2197 (1995).

Google Scholar

[13] S. S. Gevorgian, Electron. Lett. 30, 1236 (1994).

Google Scholar

[14] H. S. Kim, S. H. Oh, J. H. Suh, and C. G. Park, Mater. Res. Soc. Symp. Proc. 779, 165 (2003).

Google Scholar

[15] J. Lettieri, Y. Jia, M. Urbanik, C. I. Weber, J. P. Maria, D. G. Schlom, H. Li, R. Ramesh, and R. Uecker, P. Reiche, Appl. Phys. Lett. 73, 2923 (1998).

DOI: 10.1063/1.122631

Google Scholar

[16] H. N. Lee, A. Visinoiu, S. Senz, C. Harnagea, A. Pignolet, D. Hesse, and U. Gosele, J. Appl. Phys. 88, 6658 (2000). -200 -100 0 100 200 50 100 150 200 250 300 350 400 E ||.

Google Scholar

[100] E ||.

Google Scholar

[110] E ||.

Google Scholar

[1] Dielectric constant Electric field (kV/cm) -200 -100 0 100 200 50 100 150 200 250 300 350 400 E ||.

Google Scholar

[100] E ||.

Google Scholar

[110] E ||.

Google Scholar

[1] Dielectric constant Electric field (kV/cm).

Google Scholar