Initial Growth Mode of GaN Film on Stepped Sapphire

Article Preview

Abstract:

The initial GaN growth mode on stepped sapphires by plasma enhanced metal organic molecular beam epitaxy (PEMOMBE) has been analyzed using in-situ, real time synchrotron x-ray diffraction and x-ray absorption. The sapphire substrate annealed at high temperature had flat terraces and regular atomic steps. The crystal quality and the vicinal angle of sapphire substrate had an effect on the width of terraces and the step arrangement. The initial growth mode of the GaN film on the regular atomic step (AS) surface was the layer-by-layer mode and changed to the 3D growth mode within 2 bilayer thickness. In the meanwhile, the growth mode of the GaN film grown on the sapphire with random roughness (RR) surface made the flat surface in the early stage and changed the 3D growth mode. As increasing the film thickness, the nucleation layer grows strain-free hexagonal GaN on stepped sapphires

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 124-126)

Pages:

61-64

Citation:

Online since:

June 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Hadis Morkoc, Jour. Mat. Sci., Vol 12, (2001), p.677.

Google Scholar

[2] R. Dimitrov, M. Murphy, J. Smart, W. Schaff, J. R. Shealy, L. F. Eastman, O. Amabacher and M. Stutzmann, J. Appl. Phys., Vol 87(7)(2000), p.3375.

Google Scholar

[3] H. Z. Xu, Z.G. Wang, M. Kawbe, I. Harrison, B. J. Ansell, and C. T. Foxon, Journal of crystal growth, Vol 218, (2000), p.1.

Google Scholar

[4] L. K. Li, B. Turk, W. I. Wang, S. Syed, D. Simonian, and H. L. Stormer, Appl. Phys. Lett., Vol 76, (2000), p.742.

Google Scholar

[5] Sung-Hwan Cho, Hajime Okumura, Katsuhiro Akimoto, Appl. Phys. Lett., Vol 76, (2000), p.3861.

Google Scholar

[6] R. L. Headrick, S. Kycia, Y. K. Park, A. R. Woll, and J. D. Brock, Phys. Rev. B, Vol 54, (1996), p.14686.

Google Scholar

[7] M. Yoshimoto, T. Maeda, T. Ohnishi, H. Koinuma, O. Lshiyama, M. Shinohara, M. Kubo, R. Miura, and A. Miyamoto, Appl. Phys. Lett., Vol 67, (1995), p.2615.

DOI: 10.1063/1.114313

Google Scholar

[8] �A. R. Woll, R. L. Headrick, S. Kycia, and J. D. Brock, Phys. Rev. Lett., Vol 83, (1999), p.4349.

Google Scholar

[9] D. Y. Noh, Y. Hwu, and K. S. Liang, Phys. Rev. B, Vol 51, (1997), p.7080.

Google Scholar

[10] M. S. Yi, H. H. Lee, D. J. Kim, S. J. Park, D. Y. Noh, C. C. Kim, J. H. Je, Appl. Phys. Lett. Vol 75, (1999), p.2187.

Google Scholar

[11] @�M. S. Yi, and D. Y. Noh, Appl. Phys. Lett, Vol 78, (2001), p.2443.

Google Scholar

[12] � Zhiiang Li, Hyungjin Bang, Guanxi Piao, Junji Sawahata, Katsuhiro Akimoto, Hiroyuki Kinoshita, Kentich Wantanabe, Journal of crystal growth, Vol 234, (2002), p.25.

Google Scholar