Radiation Defects and Thermal Donors Introduced in Silicon by Hydrogen and Helium Implantation and Subsequent Annealing

Article Preview

Abstract:

The effect of high-energy hydrogen and helium implantation and subsequent annealing on generation of radiation defects and shallow donors in the low-doped oxygen-rich FZ n-type silicon was investigated. Samples were implanted with 7 MeV 4He2+ or 1.8 MeV 1H+ to fluences ranging from 1x109 to 3x1011 cm-2 and 1.4x1010 to 5x1012cm-2, resp., and then isochronally annealed for 30 minutes in the temperature range up to 550°C. Results show that radiation damage produced by helium ions remarkably enhances formation of thermal donors (TDs) when annealing temperature exceeds 375°C, i.e. when the majority of vacancy-related recombination centers anneals out. The excess concentration of TDs is proportional to the helium fluence and peaks at 1.6x1014cm-3 if annealing temperature reaches 475°C. Proton irradiation itself introduces hydrogen donors (HDs) which form a Gaussian peak at the proton end-of-range. Formation and annealing of shallow and deep hydrogen-related levels are strongly influenced by electric field at annealing temperatures below 175°C. If annealing temperature exceeds 350°C, HDs disappear and the excessive shallow doping is caused, as in the case of helium irradiation, by radiation enhanced TDs.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 131-133)

Pages:

201-206

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Hazdra, J. Vobecký, K. Brand, Nucl. Instr. and Meth. B 186 (2002) p.414.

Google Scholar

[2] H. -J. Schulze, M. Buzzo, F. -J. Niedernostheide, M. Rueb, H. Schulze, R. Job, ECS Trans. 3 (2006) p.135.

DOI: 10.1149/1.2355752

Google Scholar

[3] L. C. Kimerling, Appl. Phys. 45 (1974) p.1839.

Google Scholar

[4] V.J.B. Torres, J. Coutinho, R. Jones, M. Barroso, S. Öberg, P.R. Briddon, Physica B 376-377 (2006), 376-377, p.109.

DOI: 10.1016/j.physb.2005.12.029

Google Scholar

[5] A.G. Ulyashin, A.I. Ivanov, I.A. Khorunzhii., R. Job, W. R Fahrner, F.F. Komarov, A.C. Kamyshan, Mat. Sci. Eng. B 58 (1999) p.91.

DOI: 10.1016/s0921-5107(98)00290-6

Google Scholar

[6] Y. Ohmura, Y. Zohta, M. Kanazawa, Solid State Commun. 11 (1972) p.263.

Google Scholar

[7] P. Lévêque, P. Pellegrino, A. Hallén, B.G. Svensson, V. Privitera, Nucl. Instr. and Meth. B 174 (2001) p.297.

Google Scholar

[8] G. Alfieri, E.V. Monakhov, B.S. Avset, B.G. Svensson, Phys. Rev. B 68 (2003) p.233202.

Google Scholar

[9] E.P. Neustroev I.V. Antonova V.P. Popov, D.V. Kilanov,A. Misiuk, Physica B 293 (2000), p.44.

Google Scholar

[10] P. Hazdra, V. Komarnitskyy, Nucl. Instr. and Meth. B 253 (2006) p.187.

Google Scholar

[11] Y. Tokuda, T. Sugiyama, H. Iwata, M. Ishikko, Jpn. J. Appl. Phys. 43 (2003) p.3376.

Google Scholar

[12] O.V. Feklisova, N.A. Yarykin, Semicond. Sci. Technol. 12 (1997) p.742.

Google Scholar