SEM Investigation of Surface Defects Arising at the Formation of a Buried Nitrogen-Containing Layer in Silicon

Article Preview

Abstract:

The main goal of this work is to demonstrate the correlation between the density and type of surface defects arising during the formation of a buried nitrogen-containing layer in Si wafers, and the number of buried defects formed by different dose hydrogen preimplantation. Standard commercial 12 ⋅cm boron-doped and 4.5 ⋅cm phosphorous-doped Cz Si wafers were subjected to hydrogen ion implantation at room temperature with the energy 100 keV and doses 1⋅1015 - 4⋅1016 at/cm2. Then nitrogen was introduced into silicon from a DC plasma source at a temperature of 300 oС. Finally, all samples were subjected to 2 h vacuum annealing at 900 oС. The experiments have shown that the density and type of the surface defects depend significantly on the dose of hydrogen implantation, parameters of N+-plasma treatment, and conductivity type of silicon. Optimization of the above-mentioned parameters makes it possible to create the substrates containing a buried dielectric SixNy layer and having a practically defect-free surface.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 131-133)

Pages:

195-200

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Zheng, S.S. Lau, T. Höchbauer, A. Misra, R. Verda, X. -M. He, M. Nastasi, J.W. Mayer: J. Appl. Phys. Vol. 89 (2001), p.2972.

DOI: 10.1063/1.1334921

Google Scholar

[2] S.W. Bedell, W.A. Lanford: J. Appl. Phys. Vol. 90 (2001), p.1138.

Google Scholar

[3] M. Bruel: MRS Bulletin Vol. 23 (1998), p.38.

Google Scholar

[4] M. Bruel: Electron Lett. Vol. 31 (1995), p.1201.

Google Scholar

[5] A.V. Franzkevich, Anis M.H. Saad, A.V. Mazanik, A.K. Fedotov, E.I. Rau, S.V. Chigir: Sol. St. Phen. Vol. 95-96 (2004), p.571.

Google Scholar

[6] A.V. Frantskevich, A.K. Fedotov, N.V. Frantskevich, A.V. Mazanik, E.I. Rau, V.S. Kulinkayskas: Mat. Sci. and Eng. B Vol. B124-125 (2005), p.341.

DOI: 10.1016/j.mseb.2005.08.096

Google Scholar

[7] A.V. Frantskevich, A.M. Saad, A.K. Fedotov, A.V. Mazanik, N.V. Frantskevich: Sol. St. Phen. Vols. 108-109 (2005), p.187.

Google Scholar

[8] T. Hoechbauer, K. C. Walter, R. B. Schwarz, M. Nastasi, R. W. Bower, W. Ensinger: J. Appl. Phys. Vol. 86 (1999), p.4176.

Google Scholar

[9] T. Hoechbauer, M. Nastasi, J. W. Mayer: Appl. Phys. Lett. Vol. 75 (1999), p.3938.

Google Scholar

[10] Xinzhong Duo, Weili Liu, Miao Zhang, Lianwei Wang, Chenglu Lin, M. Okuyama, M. Noda, Wing-Yiu Cheung, S. P. Wong, Paul K. Chu, Peigang Hu, S. X. Wang, L. M. Wang: J. Appl. Phys. Vol 90 (2001), p.3780.

Google Scholar

[11] C. Qian, B. Terreault: J. Appl. Phys. Vol. 90 (2001), p.5152.

Google Scholar

[12] T. Hoechbauer, A. Misra, M. Nastasi, J. W. Mayer: J. Appl. Phys. Vol. 92 (2002), p.2335.

Google Scholar