Enhanced Oxygen Precipitation during the Czochralski Crystal Growth

Article Preview

Abstract:

An unusual pattern of the Oxidation Induced Stacking Faults (OISF) in the heavily boron-doped silicon is reported. Instead of the commonly reported simple OISF ring, we observe a banded OISF pattern. The pattern reflects the distribution of residual vacancies as it is described by Voronkov and Falster [J. Crystal Growth 204 (1999) 462]. We show that the oxygen precipitates in the L- and H- bands grow to an abnormally large size during the crystal growth and which serve as the OISF nuclei during subsequent wafer oxidation. It is concluded that a combination of the high boron, oxygen and vacancy concentration is responsible for the enhanced oxygen precipitation during the crystal growth.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 131-133)

Pages:

167-174

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Dornberger. D. Gräf, M. Suhren, U. Lambert, P. Wagner, F. Dupret, W. von Ammon, J. Crystal Growth 180 (1997) 343.

DOI: 10.1016/s0022-0248(97)00270-4

Google Scholar

[2] N. Ono, K. Harada, J. Furukawa, K. Suzuki, M. Kida and Y. Shimanuki, in Semiconductor Silicon 1998, H. R. Huff, U. Gösele, H. Tsuya, Editors, PV1998-1, p.503, The Electrochemical Society, Penington, NJ (1998).

Google Scholar

[3] E. Dornberger, PhD Thesis, UCL Belgium (1997).

Google Scholar

[4] J. -M. Kim, J. -Y. Choi, H. -J. Cho, H. -W. Lee and H. -D. Yoo, Jpn. J. Appl. Phys. 40 (2001) 1370.

Google Scholar

[5] M. Hourai, H. Nishikawa, T. Tanaka, S. Umeno, E. Asayama, T. Nomachi and G. Kelly, in Semiconductor Silicon 1998, H. R. Huff, U. Gösele, H. Tsuya, Editors, PV1998-1, p.453, The Electrochemical Society, Penington, NJ (1998).

Google Scholar

[6] G. Kissinger, J. Vanhellemont, U. Lambert, D. Graf, E. Dornberger and H. Richter, J. Electrochem. Soc. 145 (1998) 75.

Google Scholar

[7] K. Marsden, T. Kanada, M. Okui, M. Hourai, T. Shigematsu, Mater. Sci. Eng. B36 (1996) 16.

Google Scholar

[8] V.V. Voronkov, R. Falster, J. Crystal Growth 194 (1998) 76.

Google Scholar

[9] E. Asayama, T. Ono, M. Takeshita, M. Hourai, M. Sano and H. Tsuya, in Semiconductor Silicon 1998, H. R. Huff, U. Gösele, H. Tsuya, Editors, PV1998-1, p.546, The Electrochemical Society, Penington, NJ (1998).

Google Scholar

[10] S. Sadamitsu, M. Okui, K. Sueoka, K. Marsden and T. Shigematsu, Jpn. J. Appl. Phys. 34 (1995) 597.

Google Scholar

[11] G. Kissinger, G. Morgenstern, T. Grabolla, H. Richter, J. Vanhellemont, U. Lambert, D. Gräf, in High Purity Silicon V, C.L. Claeys, P. Rai-Choundry, M. Watanabe, P. Stallhoffer, H. J. Dawson, Editors, p.158, The Electrochemical Society, Penington, NJ (1998).

Google Scholar

[12] V.V. Voronkov, R. Falster, J. Crystal Growth 204 (1999) 462.

Google Scholar

[13] ASTM F723-99, Standard Practice for Conversion between Resistivity and Dopant Density for Boron-Doped, Phosphorus-Doped, and Arsenic-Doped Silicon, ASTM International, (2003).

DOI: 10.1520/f0723-99

Google Scholar

[14] ASTM F1188-02, Standard Test Method for Interstitial Atomic Oxygen Content of Silicon by Infrared Absorption with Short Baseline, ASTM International, (2003).

DOI: 10.1520/f1188-02

Google Scholar

[15] K. H. Yang, J. Electrochem. Soc. 131 (1984) 1140.

Google Scholar

[16] F. Dupret, N. Van den Bogaert, in Handbook of Crystal Growth, D. T. J. Hurle, Editor, Vol. 2B, Chapter 15, p.875, North Holland (1994).

Google Scholar

[17] N. Van den Bogaert, F. Dupret, J. Crystal Growth 171 (1997) 65.

Google Scholar

[18] H. Shimizu, C. Munacata, N. Honma, S. Aoki, Y. Kosaka, Jpn. J. Appl. Phys. 31 (1992) 1817.

Google Scholar

[19] J. Vanhelemont, O. De Gryse, P. Clauys, Physica B 340-342 (2003) 1056.

Google Scholar

[20] F.S. Ham, J. Phys. Chem. Solids 6 (1958) 225.

Google Scholar

[21] T. Y. Tan, C. Y. Kung, J. Appl. Phys. 59-3 (1986) 917.

Google Scholar

[22] P. Hopfanger, P. Collareta, M. Porrini, Mater. Sci. Eng. B73 (2000) 158.

Google Scholar

[23] B. Borionetti, D. Gambaro, S. Santi, M. Borgini, P. Godio, S. Pizzini, Mater. Sci. Eng. B73 (2000) 218.

Google Scholar

[24] K. Sueoka, M. Akatsuka, M. Okui and H. Katahama, in Semiconductor Silicon 2002, H. R. Huff, U. Gösele, H. Tsuya, Editors, PV2002-2, p.540, The Electrochemical Society, Penington, NJ (2002).

Google Scholar

[25] M. Porrini, P. Rossetto, Mater. Sci. Eng. B36 (1996) 162.

Google Scholar

[26] R. Falster, V.V. Voronkov, and F. Quast, phys. stat. solidi (b) 222 (2000) 219.

Google Scholar