Enhanced Oxygen Precipitation during the Czochralski Crystal Growth

Abstract:

Article Preview

An unusual pattern of the Oxidation Induced Stacking Faults (OISF) in the heavily boron-doped silicon is reported. Instead of the commonly reported simple OISF ring, we observe a banded OISF pattern. The pattern reflects the distribution of residual vacancies as it is described by Voronkov and Falster [J. Crystal Growth 204 (1999) 462]. We show that the oxygen precipitates in the L- and H- bands grow to an abnormally large size during the crystal growth and which serve as the OISF nuclei during subsequent wafer oxidation. It is concluded that a combination of the high boron, oxygen and vacancy concentration is responsible for the enhanced oxygen precipitation during the crystal growth.

Info:

Periodical:

Solid State Phenomena (Volumes 131-133)

Edited by:

A. Cavallini, H. Richter, M. Kittler and S. Pizzini

Pages:

167-174

DOI:

10.4028/www.scientific.net/SSP.131-133.167

Citation:

L. Válek et al., "Enhanced Oxygen Precipitation during the Czochralski Crystal Growth", Solid State Phenomena, Vols. 131-133, pp. 167-174, 2008

Online since:

October 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.