Detection of Nickel in Silicon by Recombination Lifetime Measurements

Article Preview

Abstract:

The impact of nickel on minority carrier recombination lifetime has been studied in ptype CZ silicon using SPV and μ-PCD techniques. The results show that small oxide precipitates can be used to improve drastically the detection limit of nickel. This is explained by the decoration of oxide precipitates by nickel, which results in the enhanced recombination activity. In the absence of oxide precipitates or other related bulk microdefects nickel precipitates preferably to wafer surfaces, which does not have such a high impact on the measured recombination lifetime, at least on a low concentration level. Low temperature anneal at 180°C or light illumination of the wafers after nickel in-diffusion did not reveal any further change in lifetime in any of the wafers, which may indicate that nickel precipitates efficiently during air-cooling from high temperature.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 131-133)

Pages:

183-188

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Zoth and W. Bergholz, J. Appl. Phys. Vol. 67, (1990) p.6764.

Google Scholar

[2] H. Väinölä, M. Yli-Koski, A. Haarahiltunen, and J. Sinkkonen, J. Electrochem. Soc. Vol. 150 (2003), p. G790.

DOI: 10.1149/1.1624845

Google Scholar

[3] D. Macdonald, Appl. Phys. A Vol. 81 (2005), p.1619.

Google Scholar

[4] S. Naito, T. Nakashizu, Mater. Res. Symp. Proc. Vol. 262 (1992), p.641.

Google Scholar

[5] M. Miyazaki, Recombination Lifetime Measurements in Silicon, ASTM STP 1340, ed. by D.C. Gupta, F.R. Bacher, W.M. Hughes (American Society for testing and Materials, West Conshohocken, 1998), p.294.

Google Scholar

[6] D. Walz, J. -P. Joly, R. Falster and G. Kamarinos, Jpn. J. Appl. Phys. Vol. 34 (1995), p.4091.

Google Scholar

[7] M.L. Polignano, F. Cazzaniga, A. Sabbadini, G. Queirolo, A. Cacciato, and A.D. Bartolo, Mater. Sci. Eng. Vol. B41 (1996), p.157.

Google Scholar

[8] M. Yli-Koski, H. Savin, E. Saarnilehto, A. Haarahiltunen, J. Sinkkonen, G. Berenyi, T. Pavelka, Solid State Phenomena Vols. 108-109 (2005) p.643.

DOI: 10.4028/www.scientific.net/ssp.108-109.643

Google Scholar

[9] A. Bazzali, G. Borionetti, R. Orizio, D. Gambaro, R. Falster, Mater. Sci. Eng. B Vol. 36 (1996), p.85.

Google Scholar

[10] M. Hourai, T. Naridomi, Y. Oka, K. Murakami, S. Sumita, N. Fujimo, T. Shiraiwa, Jpn. J. Appl. Phys. Vol. 27 (1998), p. L2361.

DOI: 10.1143/jjap.27.l2361

Google Scholar

[11] A.M. Goodman, J. Appl. Phys. Vol. 32 (1961), p.2550.

Google Scholar

[12] A.A. Istratov and E.R. Weber, Appl. Phys. A Vol. 66 (1998), p.123.

Google Scholar

[13] P. Geranzani, M. Pagani, C. Pello, G. Borionetti, Solid State Phenom. Vols. 82-84 (2002), p.381.

Google Scholar