Defect Engineering for SIMOX Processing

Article Preview

Abstract:

SIMOX (Separation-by-Implantation-of-Oxygen) is an established technique to fabricate silicon-on-insulator (SOI) structures by oxygen ion implantation into silicon. The main problem of SIMOX is the very high oxygen ion fluence and the related defects. It is demonstrated that vacancy defects promote and localize the oxide growth. The crucial point is to control the distribution of vacancies. Oxygen implantation generates excess vacancies around RP/2 which act as trapping sites for oxide growth outside the region at the maximum concentration of oxygen at RP. The introduction of a narrow cavity layer by He implantation and subsequent annealing is shown to be a promising technique of defect engineering. The additional He implant does not initiate oxide growth in the top-Si layer of SOI.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 131-133)

Pages:

339-344

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Margil, J. Stoemenos, C. Jaussaud, M. Bruel, Appl. Phys. Lett. 54 (1989) 526.

Google Scholar

[2] D. Venables, K.S. Jones, F. Navamar, Appl. Phys. Lett. 60 (1992) 3147.

Google Scholar

[3] D.S. Zhou, O.W. Holland, D.J. Budai, Appl. Phys. Lett. 63 (1993) 3580.

Google Scholar

[4] O.W. Holland, D.S. Zhou, D.K. Thomas, Appl. Phys. Lett. 63 (1993) 896.

Google Scholar

[5] O.W. Holland, D. Fathy, D.K. Sadana, Appl. Phys. Lett. 69 (1996) 674.

Google Scholar

[6] O.W. Holland, D.K. Sadana, US patent: US 6 259 137 B1.

Google Scholar

[7] S. Nakashima, T. Katayama, Y. Miyamura, A. Matsuzaki, M. Kataoka,D. Ebi, M. Imai, K. Izumi, N. Ohwada, J. Electrochem. Soc. 143, (1996) 244.

DOI: 10.1149/1.1836416

Google Scholar

[8] U. Gösele, E. Schroer, J. -Y. Huh, Appl. Phys. Lett. 67 (1995) 241.

Google Scholar

[9] A. Matsumura, I. Hamaguchi, K. Kawamura, T. Sasaki, S. Takayama, Y. Nagatake, Microelectronic Engineering 66(2003) 400.

DOI: 10.1016/s0167-9317(02)00913-9

Google Scholar

[10] V. Raineri, S.U. Campisano, Appl. Phys. Lett. 66 (1995) 3654.

Google Scholar

[11] M. Chen, J. Chen, W. Zheng, L. Li, H.C. Mu, Z.X. Lin, Y.H. Yu, X. Wang, G.Y. Wang, J. Vac. Sci. Technol. B 19 (2001) 337.

Google Scholar

[12] M. Chen, X. Wang, J. Chen, Y. Dong, W. Yi, X. Liu, Xi Wang, J. Vac. Sci. Technol. B 21 (2003) (2001).

Google Scholar

[13] M. Chen, X. Wang, J. Chen, Y. Dong, X. Liu, Y. Yu, Xi Wang, Appl. Phys. Lett. 80 (2002) 880.

Google Scholar

[14] A. Ogura and H. Ono, Appl. Surf. Sci. 159-160 (2000) 104.

Google Scholar

[15] R. Kögler, A. Mücklich, H. Reuther, D. Krecar, H. Hutter, W. Skorupa, Solid State Phenomena 108-109 (2005) 321.

DOI: 10.4028/www.scientific.net/ssp.108-109.321

Google Scholar

[16] O.W. Holland, L. Xie, B. Nielsen, D.S. Zhou, J. Electr. Mat. 25 (1996) 99.

Google Scholar

[17] O.W. Holland, D.K. Thomas, D.S. Zhou, Appl. Phys. Lett. 66 (1995) 1892.

Google Scholar

[18] J. Biersack and L.G. Haggmark: Nucl. Instrum. and Meth, B 174, (1980) 257.

Google Scholar

[19] R. Kögler, A. Peeva, J. Kaschny, w. Skorupa, H. Hutter, Nucl. Instrum. and Meth. B 186 (2002) 298.

Google Scholar

[20] A. Peeva, R. Kögler, W. Skorupa, J.S. Christensen, A. Yu. Kuznetsov, J. Appl. Phys. 95 (2004) 4738.

Google Scholar

[21] J.S. Williams, M.J. Conway, J. Wong-Leung, P.N.K. Deenapanray, M. Petravic, R.A. Brown, D.J. Eaglesham, D.C. Jacobson, Appl. Phys. Lett. 75 (1999) 2424.

DOI: 10.1063/1.125035

Google Scholar

[22] G. Brauer, W. Anwand, W. Skorupa, A.G. Revesz, J. Kuriplach, Phys. Rev. B 66 (2002) 195331.

Google Scholar