DLTS and PR Studies of Partially Relaxed InGaAs/GaAs Heterostructures Grown by MOVPE

Article Preview

Abstract:

The studies of electrical activity of deep electron traps and the optical response of partially-strain relaxed InxGa1-xAs layers (x=5.5%, 7.7% and 8.6%) grown by metalorganic vapourphase epitaxy (MOVPE) have been performed by means of deep-level transient spectroscopy (DLTS) and photoreflectance (PR). DLTS measurements revealed two electron traps. One of the trap has been attributed to electron states at α-type misfit dislocations. The other trap has been ascribed to the EL2 point defect. The PR spectra at room temperature were measured and analysed. By applying the results of theoretical calculations which include excitonic and strain effects, we were able to estimate the extent of strain relaxation and the values of residual strain in the partially relaxed epitaxial layers.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 131-133)

Pages:

485-490

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F.H. Pollak, in: Semiconductors and Semimetals, edited by T.P. Pearsall, Vol. 32 (Academic, New York, 1990), p.17.

Google Scholar

[2] E.R. Weber, Physica B Vol. 340-342 (2003), p.1.

Google Scholar

[3] D.V. Lang, J. Appl. Phys. Vol. 45 (1974), p.3023.

Google Scholar

[4] Ł. Gelczuk, M. Dąbrowska-Szata, G. Jóźwiak, Mat. Sci. Vol. 23 (2005), p.625.

Google Scholar

[5] W. Schröter, J. Kronewitz, U. Gnauert, F. Riedel, M. Seibt, Phys. Rev. B Vol. 52 (1995), p.13726.

DOI: 10.1103/physrevb.52.13726

Google Scholar

[6] R.S. Goldman, K.L. Kavanagh, H.H. Wieder, S.N. Ehrlich, R.M. Feenstra, J. Appl. Phys. Vol. 83 (1998), p.5137.

Google Scholar

[7] Ł. Gelczuk, J. Serafińczuk, P. DłuŜewski, G. Jóźwiak, M. Dąbrowska-Szata, submitted to Journal of Physics: Condensed Matter (2007).

Google Scholar

[8] I. Yonenaga, J. Phys. III France Vol. 7 (1997), p.1435.

Google Scholar

[9] J. Misiewicz, P. Sitarek, G. Sek, R. Kudrawiec, Materials Science Vol. 21 (2003), p.263.

Google Scholar

[10] D. E. Aspnes, Surf. Sci. Vol. 37 (1973), p.418.

Google Scholar

[11] H. Lefevre, M. Schulz, Appl. Phys. Vol. 12 (1977), p.45.

Google Scholar

[12] Ł. Gelczuk, M. Dąbrowska-Szata, G. Jóźwiak, D. Radziewicz, Physica B 388 (2007) 195-199.

DOI: 10.1016/j.physb.2006.05.426

Google Scholar

[13] Ł. Gelczuk, M. Dąbrowska-Szata, G. Jóźwiak, D. Radziewicz, J. Serafińczuk, P. DłuŜewski, Phys. Status Solidi c (2007), in press.

DOI: 10.1002/pssc.200675467

Google Scholar

[14] T. Wosiński, O. Yastrubchak, A. Mąkosa, T. Figielski, J. Phys.: Condens. Master Vol. 12 (2000), p.10153.

Google Scholar

[15] T. Wosiński, J. Appl. Phys. Vol. 65 (1989), p.1566.

Google Scholar

[16] O. Yastrubchak, T. Wosiński, A. Mąkosa, T. Figielski, A.L. Tóth, Physica B Vol. 308-310 (2001), p.757.

DOI: 10.1016/s0921-4526(01)00828-6

Google Scholar

[17] G.P. Watson, D.G. Ast, T.J. Anderson, B. Pathangey, Y. Hayakawa, J. Appl. Phys. Vol. 71 (1992), p.3399.

Google Scholar

[18] Y. Uchida, H. Kakibayashi, S. Goto, J. Appl. Phys. Vol. 74 (1993), p.6720.

Google Scholar

[19] G. Jóźwiak, M. Dąbrowska, Ł. Gelczuk, Proc. of XVI ICSS, Wrocław 2007, accepted.

Google Scholar