Solid State Phenomena
Vol. 165
Vol. 165
Solid State Phenomena
Vol. 164
Vol. 164
Solid State Phenomena
Vol. 163
Vol. 163
Solid State Phenomena
Vol. 162
Vol. 162
Solid State Phenomena
Vol. 161
Vol. 161
Solid State Phenomena
Vol. 160
Vol. 160
Solid State Phenomena
Vol. 159
Vol. 159
Solid State Phenomena
Vols. 156-158
Vols. 156-158
Solid State Phenomena
Vol. 155
Vol. 155
Solid State Phenomena
Vol. 154
Vol. 154
Solid State Phenomena
Vols. 152-153
Vols. 152-153
Solid State Phenomena
Vol. 151
Vol. 151
Solid State Phenomena
Vol. 150
Vol. 150
Solid State Phenomena Vol. 159
Paper Title Page
Abstract: A hybrid experimental-numerical approach, which combines microindentation experiments (where we measure the diagonal of the residual imprint after unloading) and numerical simulations by means of the finite-element method has been developed. The investigated materials in the present work are electrochemically deposited on brass substrates chromium and copper films with known thickness and unknown mechanical properties. Mechanical properties of the brass (CuZn36) substrate are known. Vickers’ microindentation experiments were carried out on the films and as a result the experimental load-displacement curves were obtained. After that the process of microindentation was modelled numerically by means of the finite-element method. Numerically obtained load-displacement curves were compared with the experimental curves. The results show good coincidence between numerical and experimental curves. Additionally it was realized nanoindentation experiment of thin copper film and these two methods (nanoindentation experiment and hybrid experimental-numerical method which combines experiment of microindentation and numerical simulations) for determination of mechanival properties of thin copper films were compared. Results obtained by means of the afore-mentioned two methods almost coincide but the second method is cheaper and gives more information about material properties of the film than the first method. It is shown that the second method is preferable to determine the mechanical properties of thin metal films.
157
Thickness-Dependent Interface Parameters of Silicon Oxide Films Grown on Plasma Hydrogenated Silicon
Abstract: In the present paper we discuss the defects at the oxide/Si interface and the structure of silicon oxide films grown on plasma hydrogenated (100) and (111)Si. The effect of oxide thickness ranging from 7 to 40 nm on the interface parameters was examined. Electrically active defects were characterized through C-V and G-V measurements. The dependence of the refractive index on oxide thickness was studied. Information on the oxide structure was inferred through the refractive index evaluated from ellipsometric measurements. From both, the electrical and optical results a characteristic oxide thickness was found, below which the oxide structure is different from SiO2, most probably SiOх. It is related to a modified Si surface during the pre-oxidation plasma treatment and its value depends on Si orientation and pre-clean conditions. A characteristic oxide thickness of 13 nm was found for Si hydrogenated without heating and, of 9 nm for Si hydrogenated at 300oC.
163
Abstract: The nanodispersed nitrides are applied in various technological and industrial fields. One of them is the use for modification of special steels and alloys. Results from metallographic investigation on the microstructure and properties of the alloyed in nitrogen tool steel, type X210Cr12 after modification with nanodispersed Si3N4 are presented in this paper.
167
Abstract: The present study deals with the contribution of the surface atomic layer to the specific heat of nanocrystals. In the case of small phases with comparable number of bulk and surface atoms, the variation of heat capacity with respect to that of infinitely large phase is significant. To evaluate this variation, in the framework of the classical Debye model, we introduce surface excess heat capacity that accounts for the surface layer contribution. On that physical background, we draw a functional dependence of the specific heat of nano clusters on the number of their bulk and surface atoms and corresponding bulk, , and surface, , Debye temperatures. Since depends on the crystallographic orientation of the surface, the presented model also accounts for the symmetry and atomic density of the respective crystal faces of the nanocrystal.
171
Abstract: The short and long-range atomic and magnetic order in BaFe12-xCoxTixO19 (x=0.4, 0.7, 0.8) and BaFe10.4Sc1.6O19 prepared by soft chemistry routes were studied and compared with parent BaFe12O19 prepared by solid-state reaction. For BaFe10.3Co0.85Ti0.85O19 neutron diffraction and magnetic measurements revealed that (Co2+, Ti4+) substitution causes significant distortions in the local oxygen surrounding of ferric cation sites, while the grain-size effect on the structural parameters is considerably smaller. The thermal expansion coefficient exhibits a strong anisotropy. The refined magnetic moments for x=0.45 and 0.7 based on the five-cation sublattice block-type collinear ferrimagnetic structure of uniaxial type known as Gorter type for BaFe12O19, are considerably lower than the theoretical spin only moments, especially for the 4e and 12k sites, indicating for x = 0.7 a local noncollinearity with short-range ordering. For x = 0.85, at 10 K a block-type conical magnetic structure sets in. For BaFe10.4Sc1.6O19, combined neutron diffraction, field-dependent 57Fe Mössbauer studies and magnetic measurements show that the collinear block-type structure remains effective at 300 K and below it down to about 190 K. In the 190 – 1.6 K range we observe a temperature dependent incommensurate complex block-type conical structure.
175
Abstract: Geometry of electrodes, distance between them, work atmosphere and ambient temperature are the important factors, which determine quantity and variety of structures synthesized via arc discharge. Usually, electrodes of different cross-section are placed away from each other, allowing a large vapor stream directed into the reactor inside to be obtained. Generally, the anode is thinner than the cathode; it heats up to a high temperature, sublimates and supplies the carbon vapor required for nanoparticle synthesis. In contrast to this commonly used approach, when electrode dimensions are appropriately chosen and electrodes placed closely together, temperature interaction between them becomes considerable, discharge area constrains and hot electrodes can be used as heaters for the evaporation of materials of high melting point.
181
Abstract: The aim of the present study is to demonstrate some opportunities in targeted drug delivery using nanotechnology and nanomaterials. We report here the successful development of a contrast agent and media for hypothermal processes using our own synthetic method for SPIO nanoparticles and a cyclodextrin coating
185