[1]
S. Mukhopadhyay, A. Chowdhury, S. Ray, Nanocrystalline silicon: A material for thin film solar sells with better stability, Thin Sol. Film. 516 (2008) 6824-6828.
DOI: 10.1016/j.tsf.2007.12.065
Google Scholar
[2]
E. Yablonovitch, D. L. Alara, C. C. Chang, T. Gmitter, T. B. Bright, Unusually Low Surface-Recombination Velocity on Silicon and Germanium Surfaces, Phys. Rev. Lett. 57 (1986) 249-252.
DOI: 10.1103/physrevlett.57.249
Google Scholar
[3]
S. Takeoka, M. Fujii, S. Hayashi, Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime, Phys. Rev. B. 62 (2000) 16820-16825.
DOI: 10.1103/physrevb.62.16820
Google Scholar
[4]
K. Ishioka, M. Kitajima, S. Tateishi, K. Nakanoya, N. Fukata, T. Mori, K. Murakami, S. Hishita, Hydrogen molecules trapped by multivacancies in silicon, Phys. Rev. B 60 (1999) 10852-10854.
DOI: 10.1103/physrevb.60.10852
Google Scholar
[5]
I. E. Tyschenko, A. B. Talochkin, B. A. Kolesov, K. S. Zhuravlev, V. I. Obodnikov, V. P. Popov, Raman and photoluminescence investigations of the H+ ion implanted silicon-on-insulator structure formed by hydrogen ion cut, Nucl. Instrum. Meth. Phys. Res. B 186 (2002).
DOI: 10.1016/s0168-583x(01)00865-5
Google Scholar
[6]
M. H. Brodsky, M. Cardona, J. J. Cuomo, Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering, Phys. Rev. B 16 (1977) 3556-3571.
DOI: 10.1103/physrevb.16.3556
Google Scholar
[7]
Y. Hishikava, Raman study on the variation of the silicon network of a-Si: H, J. Appl. Phys. 62 (1987) 3150-3155.
Google Scholar
[8]
V. Paillard, P. Puech, M. A. Laguna, R. Carles, B. Kohn, F. Huisken, Improved one-phonon confinement model for an accurate size determination of silicon nanocrystals, J. Appl. Phys. 86 (1999) 1921-(1924).
DOI: 10.1063/1.370988
Google Scholar
[9]
T. Hochbauer, A. Misra, M. Nastasi, J. W. Mayer, Physical mechanisms behind the ion-cut in hydrogen implanted silicon, J. Appl. Phys. 92 (2002) 2335-2342.
DOI: 10.1063/1.1494844
Google Scholar
[10]
J. Zi, H. Büscher, C. Falter, W. Ludwig, K. Zhang, X. Xie, Raman shifts in Si nanocrystals Appl. Phys. Lett. 69 (1996) 200-202.
DOI: 10.1063/1.117371
Google Scholar
[11]
P. D. J. Calcott, K. J. Nash, L. T. Canham, M. J. Kane, D. Brumhead, Identification of Radiative transitions in highly porous silicon, J. Phys: Condens. Matter. 5 (1993) L91-L98.
DOI: 10.1088/0953-8984/5/7/003
Google Scholar
[12]
J. -C. Merle, M. Capizzi, P. Fiorini, A. Frova, Uniaxially stressed silicon: Fine structure of the exciton and deformation potentials, Phys. Rev. B 17 (1978) 4821-4834.
DOI: 10.1103/physrevb.17.4821
Google Scholar
[13]
Y. Kanemitsu, Photoluminescence spectrum and dynamics in oxidized silicon nanocrystals: A nanoscopic disorder system, Phys. Rev. B 48 (1993) 4883-13520.
DOI: 10.1103/physrevb.53.13515
Google Scholar
[14]
M. L. Brongersma, P. G. Kik, A. Pollman, K. S. Min, H. A. Atwater, Size-dependent electron-hole exchange interaction in Si nanocrystals, Appl. Phys. Lett. 76 (2000) 351-353.
DOI: 10.1063/1.125751
Google Scholar