Visible Light-Emitting Hydrogenated Nanocrystalline Silicon-on-Insulator Films: Formation and Properties

Article Preview

Abstract:

Hydrogenated Si nanocrystals were performed by high-dose (51017 cm-2) low-energy (24 keV) H+ ion implantation of silicon-on-insulator (SOI) layers. The formation of the nanocrystalline phase was observed in the as-implanted samples and in those annealed at the temperature of 200-400o C. Both the Raman shift and the broadening of the phonon peak corresponded to Si nanocrystals with the diameters ranging from ~2 to ~3 nm. The room-temperature photoluminescence (PL) peaked at 1.58 - 1.64 eV was observed at room temperature. The PL peak energy corresponded to the energy of quantum confined exciton in the Si nanocrystals with the diameters mentioned above. The PL intensity had the bell-shaped dependence on the measurement temperature and had its maximum near 150 K. The estimated thermal activation energy of the PL was about 12.1 meV and was in good accordance with the singlet-triplet splitting energy of the exciton states.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 178-179)

Pages:

453-458

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Mukhopadhyay, A. Chowdhury, S. Ray, Nanocrystalline silicon: A material for thin film solar sells with better stability, Thin Sol. Film. 516 (2008) 6824-6828.

DOI: 10.1016/j.tsf.2007.12.065

Google Scholar

[2] E. Yablonovitch, D. L. Alara, C. C. Chang, T. Gmitter, T. B. Bright, Unusually Low Surface-Recombination Velocity on Silicon and Germanium Surfaces, Phys. Rev. Lett. 57 (1986) 249-252.

DOI: 10.1103/physrevlett.57.249

Google Scholar

[3] S. Takeoka, M. Fujii, S. Hayashi, Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime, Phys. Rev. B. 62 (2000) 16820-16825.

DOI: 10.1103/physrevb.62.16820

Google Scholar

[4] K. Ishioka, M. Kitajima, S. Tateishi, K. Nakanoya, N. Fukata, T. Mori, K. Murakami, S. Hishita, Hydrogen molecules trapped by multivacancies in silicon, Phys. Rev. B 60 (1999) 10852-10854.

DOI: 10.1103/physrevb.60.10852

Google Scholar

[5] I. E. Tyschenko, A. B. Talochkin, B. A. Kolesov, K. S. Zhuravlev, V. I. Obodnikov, V. P. Popov, Raman and photoluminescence investigations of the H+ ion implanted silicon-on-insulator structure formed by hydrogen ion cut, Nucl. Instrum. Meth. Phys. Res. B 186 (2002).

DOI: 10.1016/s0168-583x(01)00865-5

Google Scholar

[6] M. H. Brodsky, M. Cardona, J. J. Cuomo, Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering, Phys. Rev. B 16 (1977) 3556-3571.

DOI: 10.1103/physrevb.16.3556

Google Scholar

[7] Y. Hishikava, Raman study on the variation of the silicon network of a-Si: H, J. Appl. Phys. 62 (1987) 3150-3155.

Google Scholar

[8] V. Paillard, P. Puech, M. A. Laguna, R. Carles, B. Kohn, F. Huisken, Improved one-phonon confinement model for an accurate size determination of silicon nanocrystals, J. Appl. Phys. 86 (1999) 1921-(1924).

DOI: 10.1063/1.370988

Google Scholar

[9] T. Hochbauer, A. Misra, M. Nastasi, J. W. Mayer, Physical mechanisms behind the ion-cut in hydrogen implanted silicon, J. Appl. Phys. 92 (2002) 2335-2342.

DOI: 10.1063/1.1494844

Google Scholar

[10] J. Zi, H. Büscher, C. Falter, W. Ludwig, K. Zhang, X. Xie, Raman shifts in Si nanocrystals Appl. Phys. Lett. 69 (1996) 200-202.

DOI: 10.1063/1.117371

Google Scholar

[11] P. D. J. Calcott, K. J. Nash, L. T. Canham, M. J. Kane, D. Brumhead, Identification of Radiative transitions in highly porous silicon, J. Phys: Condens. Matter. 5 (1993) L91-L98.

DOI: 10.1088/0953-8984/5/7/003

Google Scholar

[12] J. -C. Merle, M. Capizzi, P. Fiorini, A. Frova, Uniaxially stressed silicon: Fine structure of the exciton and deformation potentials, Phys. Rev. B 17 (1978) 4821-4834.

DOI: 10.1103/physrevb.17.4821

Google Scholar

[13] Y. Kanemitsu, Photoluminescence spectrum and dynamics in oxidized silicon nanocrystals: A nanoscopic disorder system, Phys. Rev. B 48 (1993) 4883-13520.

DOI: 10.1103/physrevb.53.13515

Google Scholar

[14] M. L. Brongersma, P. G. Kik, A. Pollman, K. S. Min, H. A. Atwater, Size-dependent electron-hole exchange interaction in Si nanocrystals, Appl. Phys. Lett. 76 (2000) 351-353.

DOI: 10.1063/1.125751

Google Scholar