[1]
G. A. Ozin, Nanochemistry - Synthesis in diminishing dimensions, Adv. Mater. 4 (1992) 612-649.
DOI: 10.1002/adma.19920041003
Google Scholar
[2]
M. C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev. 104 (2004) 293-346.
DOI: 10.1021/cr030698+
Google Scholar
[3]
A. P. Alivisatos, Perspectives on the physical chemistry of semiconductor nanocrystals, J. Phys. Chem. 100 (1996) 13226-13239.
DOI: 10.1021/jp9535506
Google Scholar
[4]
T. Dietl, Chapter 17, in: T.S. Moss (Ed.), Handbook on Semiconductors, Elsevier (1994) 1255.
Google Scholar
[5]
H. Ohno, Making nonmagnetic semiconductors ferromagnetic, Science 281 (1998) 951-956.
DOI: 10.1126/science.281.5379.951
Google Scholar
[6]
G. A. Prinz, Magnetoelectronics, Science 282 (1998) 1660-1663.
Google Scholar
[7]
B. T. Jonker, Y. D. Park, B. R. Bennett, H. D. Cheong, G. Kioseoglou, A. Petrou, Robust electrical spin injection into a semiconductor heterostructure, Phys. Rev. B 62 (2000) 8180-8183.
DOI: 10.1103/physrevb.62.8180
Google Scholar
[8]
M. Jain, Diluted Magnetic Semiconductors, World Scientific Publishing Co. Pvt. Ltd. Singapore (1991).
Google Scholar
[9]
T. Devillers, M. Jamet, A. Barski, V. Poydenot, R. Dujardin, P. B. Guillemaud, J. Rothman, E. B. Amalric, J. Cibert, R. Mattana, S. Tatarenko, Structural and magnetic properties of GeMn layers; High Curie temperature ferromagnetism induced by self-organized GeMn nano-columns, Phys. Stat. Sol. A 204 (2007) 130-135.
DOI: 10.1002/pssa.200673026
Google Scholar
[10]
V. A. L. Roy, A. B. Djurisic, H. Liu, X. X. Zhang, Y. H. Leung, M. H. Xie, J. Gao, H. F. Lui, C. Surya, Magnetic properties of Mn doped ZnO tetrapod structures, Appl. Phys. Lett. 84 (2004) 756-758.
DOI: 10.1063/1.1645312
Google Scholar
[11]
D. M. C. Galicia, R. C. Perez, O. J. Sandoval, S. J. Sandoval, G. T. Delgado, C. I. Z. Romero, High transmittance CdO thin films obtained by the sol-gel method, Thin Solid Films 371 (2000) 105-108.
DOI: 10.1016/s0040-6090(00)00987-1
Google Scholar
[12]
Z. Zhao, D. L. Morel, C. S. Ferekides, Electrical and optical properties of tin-doped CdO films deposited by atmospheric metalorganic chemical vapor deposition, Thin Solid Films 413 (2002) 203-211.
DOI: 10.1016/s0040-6090(02)00344-9
Google Scholar
[13]
M. Yan, M. Lane, C. R. Kannewurf, R. P. H. Chang, Highly conductive epitaxial CdO thin films prepared by pulsed laser deposition, Appl. Phys. Lett. 78 (2001) 2342-2344.
[14]
C. S. Ferekides, R. Mamazza, U. Balasubramanian, D. L. Morel, Transparent conductors and buffer layers for CdTe solar cells, Thin Solid Films 480 (2005) 224-229.
DOI: 10.1016/j.tsf.2004.11.094
Google Scholar
[15]
A. Wang, J. R. Babcock, N. L. Edleman, A. W. Metz, M. A. Lane, R. Asahi, V. P. Dravid, C. R. Kannewurf, A. J. Freeman, T. J. Marks, Indium-cadmium-oxide films having exceptional electrical conductivity and optical transparency: Clues for optimizing transparent conductors, Proc. Natl. Acad. Sci. USA 98 (2001) 7113-7116.
DOI: 10.1073/pnas.121188298
Google Scholar
[16]
H. M. Ali, H. A. Mohamed, M. M. Wakkad, M. F. Hasaneen, Properties of transparent conducting oxides formed from CdO alloyed with In2O3, Thin Solid Films 515 (2007) 3024.
DOI: 10.1016/j.tsf.2006.06.037
Google Scholar
[17]
M. A. Flores, R. Castanedo, G. Torres, O. Zelaya, Optical, electrical and structural properties of indium-doped cadmium oxide films obtained by the sol–gel technique, Sol. Energy Mater. Sol. Cells 93 (2009) 28-32.
DOI: 10.1016/j.solmat.2008.02.006
Google Scholar
[18]
R. Maity, K. K. Chattopadhyay, Synthesis and characterization of aluminum-doped CdO thin films by sol–gel process, Sol. Energy Mater. Sol. Cells 90 (2006) 597-606.
DOI: 10.1016/j.solmat.2005.05.001
Google Scholar
[19]
S. Shu, Y. Yang, J. E. Medvedova, J. R. Ireland, A. W. Metz, J. Ni, C. R. Kannewurf, A. J. Freeman, T. J. Tobin, Dopant ion size and electronic structure effects on transparent conducting oxides. Sc-doped CdO thin films grown by MOCVD, J. Am. Chem. Soc. 126 (2004) 13787-13793.
DOI: 10.1021/ja0467925
Google Scholar
[20]
Y. Yang, S. Jin, J. E. Medvedova, J. R. Ireland, A. W. Metz, J. Ni, M. C. Hersam, A. J. Freeman, T. J. Marks, CdO as the archetypical transparent conducting oxide. Systematics of dopant ionic radius and electronic structure effects on charge transport and band structure, J. Am. Chem. Soc. 127 (2005) 8796-8804.
DOI: 10.1021/ja051272a
Google Scholar
[21]
J. W. Seo, J. W. Park, K. S. Lim, J. H. Yang, S. J. Kang, Transparent resistive random access memory and its characteristics for nonvolatile resistive switching, Appl. Phys. Lett. 93 (2008) 223505(1-3).
[22]
G. J. Exarhos, X. D. Zhou, Discovery-based design of transparent conducting oxide films, Thin Solid Films 515 (2007) 7025-7052.
DOI: 10.1063/1.3306734
Google Scholar
[23]
D. D. Edward, T. O. Mason, F. Goutenoire, K. R. Poeppelmeier, A new transparent conducting oxide in the Ga2O3–In2O3–SnO2 system, Appl. Phys. Lett. 70 (1997) 1706-1708.
DOI: 10.1063/1.118676
Google Scholar
[24]
R. S. De Baisi, M. L. N. Grillo, Influence of manganese concentration on the electron magnetic resonance spectrum of Mn2+ in CdO, J. Alloys Compd. 485 (2009) 26-28.
DOI: 10.1016/j.jallcom.2009.06.041
Google Scholar
[25]
N. Rajkumar, V. M. Susila, K. Ramachandran, On the possibility of ferromagnetism in CdO:Mn at room temperature, J. Exp. Nanosci. 6 (2011) 389-398.
Google Scholar
[26]
G. Peleckis, X. L. Wang, S. X. Dou, Ferromagnetism in Mn-doped In2O3 oxide, J. Magn. Magn. Mater. 301 (2006) 308-311.
DOI: 10.1016/j.jmmm.2005.07.004
Google Scholar
[27]
D. Maestre, I. M. D. Velasco, A. Cremades, M. Amati, J. Piqueras, Micro- and Nanopyramids of Manganese-Doped Indium Oxide, J. Phys. Chem. C 114 (2010) 11748-11752.
DOI: 10.1021/jp103670b
Google Scholar
[28]
Q. Lu, Q. Yuan, J. Wan, CdO based diluted magnetic semiconductor nanofilm and nature, J. Chin. Ceram. Soc. 38(3) (2010) 404-408.
[29]
X. Meng, L. Tang, J. Li, Room-Temperature Ferromagnetism in Co-Doped In2O3 Nanocrystals, J. Phys. Chem. C 114 (2010) 17569-17573.
DOI: 10.1021/jp106767n
Google Scholar
[30]
D. Chu, Y. P. Zeng, D. Jiang, Abnormal phase transition and magnetic properties in Cu, Fe co-doped In2O3 nanocrystals, Appl. Phys. Lett. 92(18) (2008) 182507(1-3).
DOI: 10.1063/1.2920818
Google Scholar
[31]
R. Prakash, J. I. Song, S. Kumar, C. G. Lee, Study of structural and magnetic properties of Co-doped In2O3 nanoparticles, Int. J. Nanosci. 10 (2011) 961-965.
DOI: 10.1142/s0219581x11008721
Google Scholar
[32]
F. Yakuphanoglu, Preparation of nanostructure Ni doped CdO thin films by sol gel spin coating method, J. Sol Gel Sci. Technol. 59 (2011) 569-573.
DOI: 10.1007/s10971-011-2528-2
Google Scholar
[33]
J. Chandradass, D. S. Bae, M. Balasubramanian, K. H. Kim, Effect of Ni doping on the structure and magnetic property in chemically synthesized (In1-xNix)2O3 (x = 0.03, 0.05 and 0.07) nanocrystals, Mater. Manuf. Process. 26 (2011) 325-329.
DOI: 10.1080/10426914.2010.544957
Google Scholar
[34]
Q. Sun, Y. Zeng, K. Zuo, Different magnetic properties of rhombohedral and cubic Ni2+ doped indium oxide nanomaterials, AIP Advances 1 (2011) 042102(1-6).
DOI: 10.1063/1.3650788
Google Scholar
[35]
I. A. Wani, S. Khatoon, A. Ganguly, J. Ahmed, T. Ahmad, Structural characterization and antimicrobial properties of silver nanoparticles prepared by inverse microemulsion method, Colloid Surface B 101 (2013) 243-250.
DOI: 10.1016/j.colsurfb.2012.07.001
Google Scholar
[36]
S. Khatoon, A. Ganguly, T. Ahmad, Fabrication of nano-sized solid solution of Zn1−xMnxO (x = 0·05, 0·10, 0·15) in reverse microemulsions: Structural characterization and properties, Bull. Mater. Sci. 35 (2012) 377-382.
[37]
Y. M. Kim, M. Yoon, I. W. Park, Y. J. Park, J. H. Lyou, Synthesis and magnetic properties of Zn1-xMnxO films prepared by the sol-gel method, Solid State Commun. 129 (2004) 175-178.
DOI: 10.1007/s12034-012-0310-x
Google Scholar
[38]
I. A. Wani, S. Khatoon, A. Ganguly, J. Ahmed, A. K. Ganguli, T. Ahmad, Silver nanoparticles: Large scale solvothermal synthesis and optical properties, Mater. Res. Bull. 45 (2010) 1033-1038.
DOI: 10.1016/j.materresbull.2010.03.028
Google Scholar
[39]
T. Ahmad, S. Khatoon, K. Coolahan, Optical, magnetic and structural characterization of Zn1-xCoxO nanoparticles synthesized by solvothermal method, Bull. Mater. Sci. Accepted, Ms. No. BOMS-D-12-00330R1 (2013).
DOI: 10.1007/s12034-013-0569-6
Google Scholar
[40]
S. Khatoon, T. Ahmad, Synthesis, Optical and Magnetic properties of Ni-doped ZnO nanoparticles, J. Mat. Sci. Eng. B 2(6) (2012) 325-333.
Google Scholar
[41]
S. Khatoon, K. Coolahan, S. E. Lofland, T. Ahmad, Optical and magnetic properties of solid solutions of In2-xMnxO3 (0.05, 0.10 and 0.15) nanoparticles, J. Alloy. Compd. 545 (2012) 162-167.
DOI: 10.1016/j.jallcom.2012.08.038
Google Scholar
[42]
T. Ahmad, I. A.Wani, I. H. Lone, A. Ganguly, N. Manzoor, A. Ahmad, J. Ahmed, A. S. Al-Shihri, Antifungal activity of gold nanoparticles prepared by solvothermal method, Mater. Res. Bull. 48 (2013) 12-20.
DOI: 10.1016/j.materresbull.2012.09.069
Google Scholar
[43]
S. Khatoon, I. A. Wani, J. Ahmed, T. Magdaleno, O. A. Al-Hartomy, T. Ahmad, Effect of high manganese substitution at ZnO host lattice using solvothermal method: Structural characterization and properties, Mater. Chem. Phys. DOI: 10.1016/j.matchemphys.2012.12.013 (2013).
[44]
I. A. Wani, A. Ganguly, J. Ahmed, T. Ahmad, Silver nanoparticles: Ultrasonic wave assisted synthesis, optical characterization and surface area studies, Mater. Lett. 65 (2011) 520-522.
DOI: 10.1016/j.matchemphys.2012.12.013
Google Scholar
[45]
I. A. Wani, T. Ahmad, Size and shape dependant antifungal activity of gold nanoparticles: A case study of Candida, Colloid. Surface. B 101 (2013) 162–170.
DOI: 10.1016/j.colsurfb.2012.06.005
Google Scholar
[46]
O. A. Al-Hartomy, M. Ubaidullah, S. Khatoon, J. H. Madani, T. Ahmad, Synthesis, characterization and dielectric properties of nanocrystalline Ba1-xPbxZrO3 (0 ≤ x ≤ 0.75) by polymeric citrate precursor route, J. Mater. Res. 27 (2012) 2479-2488.
DOI: 10.1557/jmr.2012.242
Google Scholar
[47]
D. P. Joseph, G. S. Kumar, C. Venkateswaran, Structural, magnetic and optical studies of Zn0.95Mn0.05O DMS, Mater. Lett. 59 (2005) 2720-2724.
DOI: 10.1016/j.matlet.2005.04.028
Google Scholar
[48]
G. Demazeau, Solvothermal processes: A route to the stabilization of new materials, J. Mater. Chem. 9 (1999) 15-18.
Google Scholar
[49]
F. Iwasaki, H. Iwasaki, Historical review of quartz crystal growth, J. Cryst. Growth 237-239 (2002) 820-827.
DOI: 10.1016/s0022-0248(01)02043-7
Google Scholar
[50]
A. Denis, G. Goglio, G. Demazeau, Gallium nitride bulk crystal growth processes: A review, Mat. Sci. Eng. R 50 (2006) 167-194.
DOI: 10.1016/j.mser.2005.11.001
Google Scholar
[51]
C. N. R. Rao, F. L. Deepak, F. L. Gundiah, A. Govindaraj, Inorganic nanowires, Progress in Solid State Chem. 31(1) (2003) 5-147.
DOI: 10.1016/j.progsolidstchem.2003.08.001
Google Scholar
[52]
N. Yamasaki, T. Yasui, K. Matsuoka, Hydrothermal decomposition of polychlorinated biphenyls, Environ. Sci. Technol. 14(5) (1980) 550-552.
DOI: 10.1021/es60165a011
Google Scholar
[53]
M. Park, S. Komarneni, R. Roy, Microwave–hydrothermal decomposition of chlorinated organic compounds, Mater. Lett. 43(5) (2000) 259-263.
DOI: 10.1016/s0167-577x(99)00270-0
Google Scholar
[54]
A. Kruse, E. Dinjus, Hot compressed water as reaction medium and reactant 2. Degradation reactions, J. Supercritical Fluids 41 (2007) 361-379.
DOI: 10.1016/j.supflu.2006.12.006
Google Scholar
[55]
T. Ahmad, S. Khatoon, K. Coolahan, S. E. Lofland, Solvothermal synthesis, optical and magnetic properties of nanocrystalline Cd1-xMnxO (0.04 < x = 0.10) solid solutions, J. Alloys Compd. Ms. Ref. No.: JALCOM-D-12-04461R1.
DOI: 10.1016/j.jallcom.2012.12.159
Google Scholar
[56]
W. K. Kim, S. G. Lee, S. Y. Jeong, S. J. Kim, Y. C. Cho, C. R. Cho, J. S. Bae, Extrinsic ferromagnetism in ZnMnO nanocrystals fabricated by using the sol-gel method, J. Korean Phys. Soc. 56 (2010) 472-475.
DOI: 10.3938/jkps.56.472
Google Scholar
[57]
R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallgr. A 32 (1976) 751-767.
DOI: 10.1107/s0567739476001551
Google Scholar
[58]
W. Lojkowski, A. Gedanken, E. Grzanka, A. Opalinska, T. Strachowski, R. Pielaszek, A. T. Grzeda, S. Yatsunenko, M. Godlewski, H. Matysiak, K. J. Kurzydlowski, Solvothermal synthesis of nanocrystalline zinc oxide doped with Mn2+, Ni2+, Co2+ and Cr3+ ions, J. Nanopart. Res. 11 (2009) 1991-2002.
DOI: 10.1007/s11051-008-9559-9
Google Scholar
[59]
G. J. Huang, J. B. Wang, X. L. Zhong, G. C. Zhou, H. L. Yan, Synthesis, structure, and room-temperature ferromagnetism of Ni-doped ZnO nanoparticles, J. Mater. Sci. 42 (2007) 6464- 6468.
DOI: 10.1007/s10853-006-1256-4
Google Scholar
[60]
G. Kortum, Reflectance Spectroscopy: Principles, Methods, Applications, New York, Springer, 1969.
Google Scholar
[61]
S. B. Ogale, R. J. Choudhary, J. P. Buban, S. E. Lofland, S. R. Shinde, S. N. Kale, V. N. Kulkarni, J. Higgins, C. Lanci, J. R. Simpson, N. D. Browning, S. D. Sarma, H. D. Drew, R. L. Greene, T. Venkatesan, High temperature ferromagnetism with a giant magnetic moment in transparent Co-doped SnO2-δ, Phys. Rev. Lett. 91 (2003) 077205(1-4).
DOI: 10.1103/physrevlett.91.077205
Google Scholar
[62]
Y. R. Park, K. J. Kim, Sputtering growth and optical properties of [100]-oriented tetragonal SnO2 and its Mn alloy films, J. Appl. Phys. 94 (2003) 6401-6404.
DOI: 10.1063/1.1618920
Google Scholar
[63]
M. Bouloudenine, N. Viart, S. Colis, A. Dinia, Bulk Zn1-xCoxO magnetic semiconductors prepared by hydrothermal technique, Chem. Phys. Lett. 397 (2004) 73-76.
DOI: 10.1016/j.cplett.2004.08.064
Google Scholar
[64]
S. Colis, H. Bieber, S. B. Colin, G. Schmerber, C. Leuvrey, A. Dinia, Magnetic properties of Co-doped ZnO diluted magnetic semiconductors prepared by low-temperature mechanosynthesis, Chem. Phys. Lett. 422 (2006) 529-533.
DOI: 10.1016/j.cplett.2006.02.109
Google Scholar
[65]
A. Bouaine, N. Brihi, G. Schmerber, C. U. Bouillet, S. Colis, A. Dinia, Structural, optical, and magnetic properties of Co-doped SnO2 powders synthesized by the coprecipitation technique, J. Phys. Chem. C 111 (2007) 2924-2928.
DOI: 10.1021/jp066897p
Google Scholar
[66]
N. S. Norberg, K. R. Kittilstved, J. E. Amonette, R. K. Kukkadapu, D. A. Schwartz, D. R. Gamelin, Synthesis of colloidal Mn2+:ZnO quantum dots and high-Tc ferromagnetic nanocrystalline thin films, J. Am. Chem. Soc. 126 (2004) 9387-9398.
DOI: 10.1021/ja048427j
Google Scholar
[67]
T. Fukumura, Z. Jin, A. Ohtomo, H. Koinuma, M. Kawasaki, An oxide-diluted magnetic semiconductor: Mn-doped ZnO, Appl. Phys. Lett. 75 (1999) 3366-3368.
DOI: 10.1063/1.125353
Google Scholar
[68]
C. H. Bates, W. B. White, R. Roy, The solubility of transition metal oxides in zinc oxide and the reflectance spectra of Mn2+ and Fe2+ in tetrahedral fields, J. Inorg. Nucl. Chem. 28 (1966) 397-405.
DOI: 10.1016/0022-1902(66)80318-4
Google Scholar
[69]
Z. Jin, M. Murakami, T. Fukumura, Y. Matsumoto, A. Ohtomo, M. Kawasaki, H. Koinuma, Combinatorial laser MBE synthesis of 3d ion doped epitaxial ZnO thin films, J. Cryst. Growth 214 (2000) 55-58.
DOI: 10.1016/s0022-0248(00)00058-0
Google Scholar
[70]
S. Deka, P. A. Joy, Synthesis and magnetic properties of Mn doped ZnO nanowires, Solid State Commun. 142 (2007) 190-194.
DOI: 10.1016/j.ssc.2007.02.017
Google Scholar
[71]
S. Ramachandran, A. Tiwari, J. Nayaran, Zn0.9Co0.1O-based diluted magnetic semiconducting thin films, Appl. Phys. Lett. 84 (2004) 5255-5257.
DOI: 10.1063/1.1764936
Google Scholar
[72]
K. J. Kim, Y. R. Park, Spectroscopic ellipsometry study of optical transitions in Zn1-xCoxO alloys, Appl. P nhys. Lett. 81 (2002) 1420-1422.
DOI: 10.1063/1.1501765
Google Scholar
[73]
J. Hays, K. M. Reddy, N. Y. Graces, M. H. Engelhard, V. Shutthanandan, M. Luo, C. Xu, N. C. Giles, C. Wang, S. Thevuthasan, A. Punnoose, Effect of Co doping on the structural, optical and magnetic properties of ZnO nanoparticles, J. Phys. Condens. Matter 19 (2007) 266203(1-24).
DOI: 10.1088/0953-8984/19/26/266203
Google Scholar
[74]
S. Singh, N. Rama, M. S. R. Rao, Influence of d-d transition bands on electrical resistivity in Ni doped polycrystalline ZnO, Appl. Phys. Lett. 88 (2006) 222111(1-3).
DOI: 10.1063/1.2208563
Google Scholar
[75]
A. M. Becerra, A. E. C. Luna, An investigation on the presence of NiAl2O4 in a stable Ni on alumina catalyst for dry reforming, J. Chil. Chem. Soc. 50 (2005) 465-469.
DOI: 10.4067/s0717-97072005000200005
Google Scholar
[76]
X. Wei, G. Xu, Z. Ren, Y. Wang, G. Shen, G. Han, Size-controlled synthesis of BaTiO3 nanocrystals via a hydrothermal route, Mater. Lett. 62 (2008) 3666-3669.
DOI: 10.1016/j.matlet.2008.04.022
Google Scholar
[77]
S. J. Lee, K. Y. Kang, S. K. Han, M. S. Jang, B. G. Chae, Y. S. Yang, S. H. Kim, Phase formation and ferroelectricity of sol-gel derived (Pb, La)TiO3 thin Films, Appl. Phys. Lett. 72 (1998) 299-301.
DOI: 10.1063/1.120717
Google Scholar
[78]
P. H. Jefferson, S. A. Hatfield, T. D. Veal, P. D. C. King, C. F. Mc Connville, J. Z. Perez, V. M. Sanjose, Bandgap and effective mass of epitaxial cadmium oxide, Appl. Phys. Lett. 92 (2008) 022101(1-3).
DOI: 10.1063/1.2896605
Google Scholar
[79]
C. N. R. Rao, F. L. Deepak, Absence of ferromagnetism in Mn- and Co-doped ZnO, J. Mater. Chem. 15 (2005) 573-578.
DOI: 10.1039/b412993h
Google Scholar