A Review on Chemical Synthesis, Characterization and Optical Properties of Nanocrystalline Transition Metal Doped Dilute Magnetic Semiconductors

Article Preview

Abstract:

Nanomaterials have fascinated researchers in recent years because these materials exhibit unusual optical, magnetic and electrical properties as compared to their bulk counterparts. Incorporating impurity ions into a semiconducting host to extend its properties has been one of the most important techniques that paved the way for the modern technology based on spintronic devices. Over the past few years, oxide based dilute magnetic semiconductors (DMSs) have gained remarkable interest due to the possibility of inducing room temperature ferromagnetism. This review describes the experimental developments and optical properties of oxide based DMSs, including the recent results on ZnO, CdO and In2O3 based systems. Optical properties of transition metal (TM)-doped ZnO, CdO and In2O3 dilute magnetic semiconductor nanoparticles show red shift in energy band gaps. Such types of phenomena are attributed to sp-d exchange interactions between band electrons and localized d-electrons of the substituted transition metal ions. Table of Contents

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 201)

Pages:

103-129

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. A. Ozin, Nanochemistry - Synthesis in diminishing dimensions, Adv. Mater. 4 (1992) 612-649.

DOI: 10.1002/adma.19920041003

Google Scholar

[2] M. C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev. 104 (2004) 293-346.

DOI: 10.1021/cr030698+

Google Scholar

[3] A. P. Alivisatos, Perspectives on the physical chemistry of semiconductor nanocrystals, J. Phys. Chem. 100 (1996) 13226-13239.

DOI: 10.1021/jp9535506

Google Scholar

[4] T. Dietl, Chapter 17, in: T.S. Moss (Ed.), Handbook on Semiconductors, Elsevier (1994) 1255.

Google Scholar

[5] H. Ohno, Making nonmagnetic semiconductors ferromagnetic, Science 281 (1998) 951-956.

DOI: 10.1126/science.281.5379.951

Google Scholar

[6] G. A. Prinz, Magnetoelectronics, Science 282 (1998) 1660-1663.

Google Scholar

[7] B. T. Jonker, Y. D. Park, B. R. Bennett, H. D. Cheong, G. Kioseoglou, A. Petrou, Robust electrical spin injection into a semiconductor heterostructure, Phys. Rev. B 62 (2000) 8180-8183.

DOI: 10.1103/physrevb.62.8180

Google Scholar

[8] M. Jain, Diluted Magnetic Semiconductors, World Scientific Publishing Co. Pvt. Ltd. Singapore (1991).

Google Scholar

[9] T. Devillers, M. Jamet, A. Barski, V. Poydenot, R. Dujardin, P. B. Guillemaud, J. Rothman, E. B. Amalric, J. Cibert, R. Mattana, S. Tatarenko, Structural and magnetic properties of GeMn layers; High Curie temperature ferromagnetism induced by self-organized GeMn nano-columns, Phys. Stat. Sol. A 204 (2007) 130-135.

DOI: 10.1002/pssa.200673026

Google Scholar

[10] V. A. L. Roy, A. B. Djurisic, H. Liu, X. X. Zhang, Y. H. Leung, M. H. Xie, J. Gao, H. F. Lui, C. Surya, Magnetic properties of Mn doped ZnO tetrapod structures, Appl. Phys. Lett. 84 (2004) 756-758.

DOI: 10.1063/1.1645312

Google Scholar

[11] D. M. C. Galicia, R. C. Perez, O. J. Sandoval, S. J. Sandoval, G. T. Delgado, C. I. Z. Romero, High transmittance CdO thin films obtained by the sol-gel method, Thin Solid Films 371 (2000) 105-108.

DOI: 10.1016/s0040-6090(00)00987-1

Google Scholar

[12] Z. Zhao, D. L. Morel, C. S. Ferekides, Electrical and optical properties of tin-doped CdO films deposited by atmospheric metalorganic chemical vapor deposition, Thin Solid Films 413 (2002) 203-211.

DOI: 10.1016/s0040-6090(02)00344-9

Google Scholar

[13] M. Yan, M. Lane, C. R. Kannewurf, R. P. H. Chang, Highly conductive epitaxial CdO thin films prepared by pulsed laser deposition, Appl. Phys. Lett. 78 (2001) 2342-2344. [14] C. S. Ferekides, R. Mamazza, U. Balasubramanian, D. L. Morel, Transparent conductors and buffer layers for CdTe solar cells, Thin Solid Films 480 (2005) 224-229.

DOI: 10.1016/j.tsf.2004.11.094

Google Scholar

[15] A. Wang, J. R. Babcock, N. L. Edleman, A. W. Metz, M. A. Lane, R. Asahi, V. P. Dravid, C. R. Kannewurf, A. J. Freeman, T. J. Marks, Indium-cadmium-oxide films having exceptional electrical conductivity and optical transparency: Clues for optimizing transparent conductors, Proc. Natl. Acad. Sci. USA 98 (2001) 7113-7116.

DOI: 10.1073/pnas.121188298

Google Scholar

[16] H. M. Ali, H. A. Mohamed, M. M. Wakkad, M. F. Hasaneen, Properties of transparent conducting oxides formed from CdO alloyed with In2O3, Thin Solid Films 515 (2007) 3024.

DOI: 10.1016/j.tsf.2006.06.037

Google Scholar

[17] M. A. Flores, R. Castanedo, G. Torres, O. Zelaya, Optical, electrical and structural properties of indium-doped cadmium oxide films obtained by the sol–gel technique, Sol. Energy Mater. Sol. Cells 93 (2009) 28-32.

DOI: 10.1016/j.solmat.2008.02.006

Google Scholar

[18] R. Maity, K. K. Chattopadhyay, Synthesis and characterization of aluminum-doped CdO thin films by sol–gel process, Sol. Energy Mater. Sol. Cells 90 (2006) 597-606.

DOI: 10.1016/j.solmat.2005.05.001

Google Scholar

[19] S. Shu, Y. Yang, J. E. Medvedova, J. R. Ireland, A. W. Metz, J. Ni, C. R. Kannewurf, A. J. Freeman, T. J. Tobin, Dopant ion size and electronic structure effects on transparent conducting oxides. Sc-doped CdO thin films grown by MOCVD, J. Am. Chem. Soc. 126 (2004) 13787-13793.

DOI: 10.1021/ja0467925

Google Scholar

[20] Y. Yang, S. Jin, J. E. Medvedova, J. R. Ireland, A. W. Metz, J. Ni, M. C. Hersam, A. J. Freeman, T. J. Marks, CdO as the archetypical transparent conducting oxide. Systematics of dopant ionic radius and electronic structure effects on charge transport and band structure, J. Am. Chem. Soc. 127 (2005) 8796-8804.

DOI: 10.1021/ja051272a

Google Scholar

[21] J. W. Seo, J. W. Park, K. S. Lim, J. H. Yang, S. J. Kang, Transparent resistive random access memory and its characteristics for nonvolatile resistive switching, Appl. Phys. Lett. 93 (2008) 223505(1-3). [22] G. J. Exarhos, X. D. Zhou, Discovery-based design of transparent conducting oxide films, Thin Solid Films 515 (2007) 7025-7052.

DOI: 10.1063/1.3306734

Google Scholar

[23] D. D. Edward, T. O. Mason, F. Goutenoire, K. R. Poeppelmeier, A new transparent conducting oxide in the Ga2O3–In2O3–SnO2 system, Appl. Phys. Lett. 70 (1997) 1706-1708.

DOI: 10.1063/1.118676

Google Scholar

[24] R. S. De Baisi, M. L. N. Grillo, Influence of manganese concentration on the electron magnetic resonance spectrum of Mn2+ in CdO, J. Alloys Compd. 485 (2009) 26-28.

DOI: 10.1016/j.jallcom.2009.06.041

Google Scholar

[25] N. Rajkumar, V. M. Susila, K. Ramachandran, On the possibility of ferromagnetism in CdO:Mn at room temperature, J. Exp. Nanosci. 6 (2011) 389-398.

Google Scholar

[26] G. Peleckis, X. L. Wang, S. X. Dou, Ferromagnetism in Mn-doped In2O3 oxide, J. Magn. Magn. Mater. 301 (2006) 308-311.

DOI: 10.1016/j.jmmm.2005.07.004

Google Scholar

[27] D. Maestre, I. M. D. Velasco, A. Cremades, M. Amati, J. Piqueras, Micro- and Nanopyramids of Manganese-Doped Indium Oxide, J. Phys. Chem. C 114 (2010) 11748-11752.

DOI: 10.1021/jp103670b

Google Scholar

[28] Q. Lu, Q. Yuan, J. Wan, CdO based diluted magnetic semiconductor nanofilm and nature, J. Chin. Ceram. Soc. 38(3) (2010) 404-408. [29] X. Meng, L. Tang, J. Li, Room-Temperature Ferromagnetism in Co-Doped In2O3 Nanocrystals, J. Phys. Chem. C 114 (2010) 17569-17573.

DOI: 10.1021/jp106767n

Google Scholar

[30] D. Chu, Y. P. Zeng, D. Jiang, Abnormal phase transition and magnetic properties in Cu, Fe co-doped In2O3 nanocrystals, Appl. Phys. Lett. 92(18) (2008) 182507(1-3).

DOI: 10.1063/1.2920818

Google Scholar

[31] R. Prakash, J. I. Song, S. Kumar, C. G. Lee, Study of structural and magnetic properties of Co-doped In2O3 nanoparticles, Int. J. Nanosci. 10 (2011) 961-965.

DOI: 10.1142/s0219581x11008721

Google Scholar

[32] F. Yakuphanoglu, Preparation of nanostructure Ni doped CdO thin films by sol gel spin coating method, J. Sol Gel Sci. Technol. 59 (2011) 569-573.

DOI: 10.1007/s10971-011-2528-2

Google Scholar

[33] J. Chandradass, D. S. Bae, M. Balasubramanian, K. H. Kim, Effect of Ni doping on the structure and magnetic property in chemically synthesized (In1-xNix)2O3 (x = 0.03, 0.05 and 0.07) nanocrystals, Mater. Manuf. Process. 26 (2011) 325-329.

DOI: 10.1080/10426914.2010.544957

Google Scholar

[34] Q. Sun, Y. Zeng, K. Zuo, Different magnetic properties of rhombohedral and cubic Ni2+ doped indium oxide nanomaterials, AIP Advances 1 (2011) 042102(1-6).

DOI: 10.1063/1.3650788

Google Scholar

[35] I. A. Wani, S. Khatoon, A. Ganguly, J. Ahmed, T. Ahmad, Structural characterization and antimicrobial properties of silver nanoparticles prepared by inverse microemulsion method, Colloid Surface B 101 (2013) 243-250.

DOI: 10.1016/j.colsurfb.2012.07.001

Google Scholar

[36] S. Khatoon, A. Ganguly, T. Ahmad, Fabrication of nano-sized solid solution of Zn1−xMnxO (x = 0·05, 0·10, 0·15) in reverse microemulsions: Structural characterization and properties, Bull. Mater. Sci. 35 (2012) 377-382. [37] Y. M. Kim, M. Yoon, I. W. Park, Y. J. Park, J. H. Lyou, Synthesis and magnetic properties of Zn1-xMnxO films prepared by the sol-gel method, Solid State Commun. 129 (2004) 175-178.

DOI: 10.1007/s12034-012-0310-x

Google Scholar

[38] I. A. Wani, S. Khatoon, A. Ganguly, J. Ahmed, A. K. Ganguli, T. Ahmad, Silver nanoparticles: Large scale solvothermal synthesis and optical properties, Mater. Res. Bull. 45 (2010) 1033-1038.

DOI: 10.1016/j.materresbull.2010.03.028

Google Scholar

[39] T. Ahmad, S. Khatoon, K. Coolahan, Optical, magnetic and structural characterization of Zn1-xCoxO nanoparticles synthesized by solvothermal method, Bull. Mater. Sci. Accepted, Ms. No. BOMS-D-12-00330R1 (2013).

DOI: 10.1007/s12034-013-0569-6

Google Scholar

[40] S. Khatoon, T. Ahmad, Synthesis, Optical and Magnetic properties of Ni-doped ZnO nanoparticles, J. Mat. Sci. Eng. B 2(6) (2012) 325-333.

Google Scholar

[41] S. Khatoon, K. Coolahan, S. E. Lofland, T. Ahmad, Optical and magnetic properties of solid solutions of In2-xMnxO3 (0.05, 0.10 and 0.15) nanoparticles, J. Alloy. Compd. 545 (2012) 162-167.

DOI: 10.1016/j.jallcom.2012.08.038

Google Scholar

[42] T. Ahmad, I. A.Wani, I. H. Lone, A. Ganguly, N. Manzoor, A. Ahmad, J. Ahmed, A. S. Al-Shihri, Antifungal activity of gold nanoparticles prepared by solvothermal method, Mater. Res. Bull. 48 (2013) 12-20.

DOI: 10.1016/j.materresbull.2012.09.069

Google Scholar

[43] S. Khatoon, I. A. Wani, J. Ahmed, T. Magdaleno, O. A. Al-Hartomy, T. Ahmad, Effect of high manganese substitution at ZnO host lattice using solvothermal method: Structural characterization and properties, Mater. Chem. Phys. DOI: 10.1016/j.matchemphys.2012.12.013 (2013). [44] I. A. Wani, A. Ganguly, J. Ahmed, T. Ahmad, Silver nanoparticles: Ultrasonic wave assisted synthesis, optical characterization and surface area studies, Mater. Lett. 65 (2011) 520-522.

DOI: 10.1016/j.matchemphys.2012.12.013

Google Scholar

[45] I. A. Wani, T. Ahmad, Size and shape dependant antifungal activity of gold nanoparticles: A case study of Candida, Colloid. Surface. B 101 (2013) 162–170.

DOI: 10.1016/j.colsurfb.2012.06.005

Google Scholar

[46] O. A. Al-Hartomy, M. Ubaidullah, S. Khatoon, J. H. Madani, T. Ahmad, Synthesis, characterization and dielectric properties of nanocrystalline Ba1-xPbxZrO3 (0 ≤ x ≤ 0.75) by polymeric citrate precursor route, J. Mater. Res. 27 (2012) 2479-2488.

DOI: 10.1557/jmr.2012.242

Google Scholar

[47] D. P. Joseph, G. S. Kumar, C. Venkateswaran, Structural, magnetic and optical studies of Zn0.95Mn0.05O DMS, Mater. Lett. 59 (2005) 2720-2724.

DOI: 10.1016/j.matlet.2005.04.028

Google Scholar

[48] G. Demazeau, Solvothermal processes: A route to the stabilization of new materials, J. Mater. Chem. 9 (1999) 15-18.

Google Scholar

[49] F. Iwasaki, H. Iwasaki, Historical review of quartz crystal growth, J. Cryst. Growth 237-239 (2002) 820-827.

DOI: 10.1016/s0022-0248(01)02043-7

Google Scholar

[50] A. Denis, G. Goglio, G. Demazeau, Gallium nitride bulk crystal growth processes: A review, Mat. Sci. Eng. R 50 (2006) 167-194.

DOI: 10.1016/j.mser.2005.11.001

Google Scholar

[51] C. N. R. Rao, F. L. Deepak, F. L. Gundiah, A. Govindaraj, Inorganic nanowires, Progress in Solid State Chem. 31(1) (2003) 5-147.

DOI: 10.1016/j.progsolidstchem.2003.08.001

Google Scholar

[52] N. Yamasaki, T. Yasui, K. Matsuoka, Hydrothermal decomposition of polychlorinated biphenyls, Environ. Sci. Technol. 14(5) (1980) 550-552.

DOI: 10.1021/es60165a011

Google Scholar

[53] M. Park, S. Komarneni, R. Roy, Microwave–hydrothermal decomposition of chlorinated organic compounds, Mater. Lett. 43(5) (2000) 259-263.

DOI: 10.1016/s0167-577x(99)00270-0

Google Scholar

[54] A. Kruse, E. Dinjus, Hot compressed water as reaction medium and reactant 2. Degradation reactions, J. Supercritical Fluids 41 (2007) 361-379.

DOI: 10.1016/j.supflu.2006.12.006

Google Scholar

[55] T. Ahmad, S. Khatoon, K. Coolahan, S. E. Lofland, Solvothermal synthesis, optical and magnetic properties of nanocrystalline Cd1-xMnxO (0.04 < x = 0.10) solid solutions, J. Alloys Compd. Ms. Ref. No.:  JALCOM-D-12-04461R1.

DOI: 10.1016/j.jallcom.2012.12.159

Google Scholar

[56] W. K. Kim, S. G. Lee, S. Y. Jeong, S. J. Kim, Y. C. Cho, C. R. Cho, J. S. Bae, Extrinsic ferromagnetism in ZnMnO nanocrystals fabricated by using the sol-gel method, J. Korean Phys. Soc. 56 (2010) 472-475.

DOI: 10.3938/jkps.56.472

Google Scholar

[57] R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallgr. A 32 (1976) 751-767.

DOI: 10.1107/s0567739476001551

Google Scholar

[58] W. Lojkowski, A. Gedanken, E. Grzanka, A. Opalinska, T. Strachowski, R. Pielaszek, A. T. Grzeda, S. Yatsunenko, M. Godlewski, H. Matysiak, K. J. Kurzydlowski, Solvothermal synthesis of nanocrystalline zinc oxide doped with Mn2+, Ni2+, Co2+ and Cr3+ ions, J. Nanopart. Res. 11 (2009) 1991-2002.

DOI: 10.1007/s11051-008-9559-9

Google Scholar

[59] G. J. Huang, J. B. Wang, X. L. Zhong, G. C. Zhou, H. L. Yan, Synthesis, structure, and room-temperature ferromagnetism of Ni-doped ZnO nanoparticles, J. Mater. Sci. 42 (2007) 6464- 6468.

DOI: 10.1007/s10853-006-1256-4

Google Scholar

[60] G. Kortum, Reflectance Spectroscopy: Principles, Methods, Applications, New York, Springer, 1969.

Google Scholar

[61] S. B. Ogale, R. J. Choudhary, J. P. Buban, S. E. Lofland, S. R. Shinde, S. N. Kale, V. N. Kulkarni, J. Higgins, C. Lanci, J. R. Simpson, N. D. Browning, S. D. Sarma, H. D. Drew, R. L. Greene, T. Venkatesan, High temperature ferromagnetism with a giant magnetic moment in transparent Co-doped SnO2-δ, Phys. Rev. Lett. 91 (2003) 077205(1-4).

DOI: 10.1103/physrevlett.91.077205

Google Scholar

[62] Y. R. Park, K. J. Kim, Sputtering growth and optical properties of [100]-oriented tetragonal SnO2 and its Mn alloy films, J. Appl. Phys. 94 (2003) 6401-6404.

DOI: 10.1063/1.1618920

Google Scholar

[63] M. Bouloudenine, N. Viart, S. Colis, A. Dinia, Bulk Zn1-xCoxO magnetic semiconductors prepared by hydrothermal technique, Chem. Phys. Lett. 397 (2004) 73-76.

DOI: 10.1016/j.cplett.2004.08.064

Google Scholar

[64] S. Colis, H. Bieber, S. B. Colin, G. Schmerber, C. Leuvrey, A. Dinia, Magnetic properties of Co-doped ZnO diluted magnetic semiconductors prepared by low-temperature mechanosynthesis, Chem. Phys. Lett. 422 (2006) 529-533.

DOI: 10.1016/j.cplett.2006.02.109

Google Scholar

[65] A. Bouaine, N. Brihi, G. Schmerber, C. U. Bouillet, S. Colis, A. Dinia, Structural, optical, and magnetic properties of Co-doped SnO2 powders synthesized by the coprecipitation technique, J. Phys. Chem. C 111 (2007) 2924-2928.

DOI: 10.1021/jp066897p

Google Scholar

[66] N. S. Norberg, K. R. Kittilstved, J. E. Amonette, R. K. Kukkadapu, D. A. Schwartz, D. R. Gamelin, Synthesis of colloidal Mn2+:ZnO quantum dots and high-Tc ferromagnetic nanocrystalline thin films, J. Am. Chem. Soc. 126 (2004) 9387-9398.

DOI: 10.1021/ja048427j

Google Scholar

[67] T. Fukumura, Z. Jin, A. Ohtomo, H. Koinuma, M. Kawasaki, An oxide-diluted magnetic semiconductor: Mn-doped ZnO, Appl. Phys. Lett. 75 (1999) 3366-3368.

DOI: 10.1063/1.125353

Google Scholar

[68] C. H. Bates, W. B. White, R. Roy, The solubility of transition metal oxides in zinc oxide and the reflectance spectra of Mn2+ and Fe2+ in tetrahedral fields, J. Inorg. Nucl. Chem. 28 (1966) 397-405.

DOI: 10.1016/0022-1902(66)80318-4

Google Scholar

[69] Z. Jin, M. Murakami, T. Fukumura, Y. Matsumoto, A. Ohtomo, M. Kawasaki, H. Koinuma, Combinatorial laser MBE synthesis of 3d ion doped epitaxial ZnO thin films, J. Cryst. Growth 214 (2000) 55-58.

DOI: 10.1016/s0022-0248(00)00058-0

Google Scholar

[70] S. Deka, P. A. Joy, Synthesis and magnetic properties of Mn doped ZnO nanowires, Solid State Commun. 142 (2007) 190-194.

DOI: 10.1016/j.ssc.2007.02.017

Google Scholar

[71] S. Ramachandran, A. Tiwari, J. Nayaran, Zn0.9Co0.1O-based diluted magnetic semiconducting thin films, Appl. Phys. Lett. 84 (2004) 5255-5257.

DOI: 10.1063/1.1764936

Google Scholar

[72] K. J. Kim, Y. R. Park, Spectroscopic ellipsometry study of optical transitions in Zn1-xCoxO alloys, Appl. P nhys. Lett. 81 (2002) 1420-1422.

DOI: 10.1063/1.1501765

Google Scholar

[73] J. Hays, K. M. Reddy, N. Y. Graces, M. H. Engelhard, V. Shutthanandan, M. Luo, C. Xu, N. C. Giles, C. Wang, S. Thevuthasan, A. Punnoose, Effect of Co doping on the structural, optical and magnetic properties of ZnO nanoparticles, J. Phys. Condens. Matter 19 (2007) 266203(1-24).

DOI: 10.1088/0953-8984/19/26/266203

Google Scholar

[74] S. Singh, N. Rama, M. S. R. Rao, Influence of d-d transition bands on electrical resistivity in Ni doped polycrystalline ZnO, Appl. Phys. Lett. 88 (2006) 222111(1-3).

DOI: 10.1063/1.2208563

Google Scholar

[75] A. M. Becerra, A. E. C. Luna, An investigation on the presence of NiAl2O4 in a stable Ni on alumina catalyst for dry reforming, J. Chil. Chem. Soc. 50 (2005) 465-469.

DOI: 10.4067/s0717-97072005000200005

Google Scholar

[76] X. Wei, G. Xu, Z. Ren, Y. Wang, G. Shen, G. Han, Size-controlled synthesis of BaTiO3 nanocrystals via a hydrothermal route, Mater. Lett. 62 (2008) 3666-3669.

DOI: 10.1016/j.matlet.2008.04.022

Google Scholar

[77] S. J. Lee, K. Y. Kang, S. K. Han, M. S. Jang, B. G. Chae, Y. S. Yang, S. H. Kim, Phase formation and ferroelectricity of sol-gel derived (Pb, La)TiO3 thin Films, Appl. Phys. Lett. 72 (1998) 299-301.

DOI: 10.1063/1.120717

Google Scholar

[78] P. H. Jefferson, S. A. Hatfield, T. D. Veal, P. D. C. King, C. F. Mc Connville, J. Z. Perez, V. M. Sanjose, Bandgap and effective mass of epitaxial cadmium oxide, Appl. Phys. Lett. 92 (2008) 022101(1-3).

DOI: 10.1063/1.2896605

Google Scholar

[79] C. N. R. Rao, F. L. Deepak, Absence of ferromagnetism in Mn- and Co-doped ZnO, J. Mater. Chem. 15 (2005) 573-578.

DOI: 10.1039/b412993h

Google Scholar