Fabrication of Nanoflowers and other Exotic Patterns

Article Preview

Abstract:

A wide variety of metallic and metal oxide nanoflowers and other exotic patterns have been fabricated using different techniques. We have created copper and cupric oxide nanoflowers using two different techniques: electro-deposition of copper in polymer and anodic alumina templates, and cytyltrimethal ammonium bromide (CTAB)-assisted hydrothermal method, respectively. Zinc oxide and manganese oxide nanoflowers have been synthesized by thermal treatment. Characterization of nanoflowers is done in the same way as for nanowires using XRD, SEM, TEM and FESEM. Scanning Electron Microscope (SEM) images record some interesting morphologies of metallic copper nanoflowers. Field Emission Scanning Electron Microscope (FESEM) has been used to determine morphology and composition of copper oxide nanoflowers. X-ray diffraction (XRD) pattern reveals the monoclinic phase of CuO in the crystallographic structure of copper oxide nanoflowers. Nanoflowers find interesting applications in industry. There is an element of random artistic design of nature, rather than science, in exotic patterns of nanoflowers fabricated in our laboratory.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 201)

Pages:

159-180

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.I. Kharisov, Recent Patents on Nanotechnology, 2 (3) (2008) 190-200.

Google Scholar

[2] O.V. Kharissova and B.I. Kharisov, Recent Patents on Nanotechnology, 2(2) (2008) 103-119.

Google Scholar

[3] O.V. Kharissova, B.I. Kharisov, T.H. Garcia and U.O. Mendez, Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, 39 (2009) 662-684.

DOI: 10.1080/15533170903433196

Google Scholar

[4] B.I. Kharisov and O.V. Kharissova, Less-common nanostructures in the forms of vegetation, Ind. Eng. Chem. Res. 49 (2010) 11142-11160.

DOI: 10.1021/ie1017139

Google Scholar

[5] Y. Zou, Y. Li, N. Zhang and J. Li, Prepared of flower-like CuO via CTAB-assisted hydrothermal method, Adv. Mater. Res. 152-153 (2011) 909-914.

DOI: 10.4028/www.scientific.net/amr.152-153.909

Google Scholar

[6] M.H. Cao, C.W. Hu, Y.H. Wang, Y.H. Guo, C.X. Guo and E.B. Wang, A controllable synthetic route to Cu, Cu2O and CuO nanotubes and nanorods, Chem. Comm. 15 (2003) 1884-1885.

DOI: 10.1039/b304505f

Google Scholar

[7] J.H. Schon, M. Dorget, F.C. Beuran, X.Z. Zu, E. Arushanov, C.D. Cavellin and M. Lagues, Superconductivity in CaCuO2 as a result of field-effect doping, Nature, 414 (2001) 434-436.

DOI: 10.1038/35106539

Google Scholar

[8] Y. Li, J. Liang, Z. Tao and J. Chen, CuO particles and plates: Synthesis and gas-sensor application, Mater. Res. Bull. 43 (2008) 2380-2385.

DOI: 10.1016/j.materresbull.2007.07.045

Google Scholar

[9] J.B. Reitz and E.I. Solomon, Propylene oxidation on copper oxide surfaces: electronic and geometric contributions to reactivity and selectivity, J. Am. Chem. Soc. 120 (1998) 11467-11478.

DOI: 10.1021/ja981579s

Google Scholar

[10] J. Ziolo, F. Borsa, M. Corti, A. Rigamonti and F. Parmigiani, Cu nuclear quadrupole resonance and magnetic phase transition in CuO, J. Appl. Phys. 67 (1990) 5864-5866.

DOI: 10.1063/1.345996

Google Scholar

[11] X.P. Gao, J.L. Bao, G.L. Pan, H.Y. Zhu, P.X. Huang, F. Wu and D.Y. Song, Preparation and Electrochemical Performance of Polycrystalline and Single Crystalline CuO Nanorods as Anode Materials for Li Ion Battery, J. Phys. Chem. B 108 (2004) 5547-5551.

DOI: 10.1021/jp037075k

Google Scholar

[12] A. Gu, G. Wang, X. Zhang and B. Fang, Synthesis of CuO nanoflower and its application as a H2O2 sensor, Bull. Mater. Sci. 33 (1) (2010) 17–20.

DOI: 10.1007/s12034-010-0002-3

Google Scholar

[13] J. Ge, J. Lei and R.N. Zare, Protein–inorganic hybrid nanoflowers, Nature Nanotech. 7 (2012) 428-432.

DOI: 10.1038/nnano.2012.80

Google Scholar

[14] S. Karan, D. Basik and B. Mallik, Copper phthalocyanine nanoparticles and nanoflowers, Chem. Phys. Lett. 434 (2007) 265–270.

DOI: 10.1016/j.cplett.2006.12.007

Google Scholar

[15] E. Jungyoon, S. Kim, E. Lim, K. Lee, D. Cha and B. Friedman, Effects of substrate temperature on copper (II) phthalocynine thin films, Appl. Surf. Sci. 205 (2003) 274-279.

DOI: 10.1016/s0169-4332(02)01115-7

Google Scholar

[16] Y. Choe, S.Y. Park, D.W. Park and W. Kim, Influence of a Stacked-CuPc Layer on the Performance of Organic Light-Emitting Diodes, Macrmol. Res. 14 (2006) 38-44.

DOI: 10.1007/bf03219066

Google Scholar

[17] I. Biswas, H. Peisert, M. Nagel, M. B. Casu, S. Schuppler, P. Nagel, E. Pellegrin, T. Chassé, Buried interfacial layer of highly oriented molecules in copper phthalocyanine thin films on polycrystalline gold, J. Chem. Phys. 126 (20070 174704/1-5.

DOI: 10.1063/1.2727476

Google Scholar

[18] H. Peisert, I. Biswas, L. Zhang, M. Knupfer, M. Hanack, D. Dini, M. Cook, I. Chambrier, T.Schmidt, D. Batchelor, T. Chassé, Orientation of substituted phthalocyanines on polycrystalline gold: distinguishing between the first layers and thin films, Chem. Phys. Lett. 403 (2005) 1.

DOI: 10.1016/j.cplett.2004.12.039

Google Scholar

[19] C.C. Leznoff and A.B.P. Lever, Phthalocyanines, Properties and applications, Vol.3, VCH, New York, 1993.

Google Scholar

[20] F. Young, M. Shtein and S.R. Forrest, Controlled growth of a molecular bulk heterojunction photovoltaic cell, Nature Mater. 4(1) (2005) 37-41.

DOI: 10.1038/nmat1285

Google Scholar

[21] R. Koshy and C.S. Menon, Effect of Vacuum Annealing on the Optoelectric and Morphological Properties of F16CuPc Thin Films, E-Journal of Chemistry 9(1) (2012) 294-300, http://www.e-journals.net.

DOI: 10.1155/2012/101686

Google Scholar

[22] K. Kudo, K. Shimada, K. Marugami, M. Iizuka, S. Kuniyoshi and K. Tanaka, Organic static induction transistor for color sensors, Synth. Metals 102 (1999) 900-903.

DOI: 10.1016/s0379-6779(98)00381-6

Google Scholar

[23] S.A. Van Slyke, C.H. Chen and C.W. Tang, Organic electroluminescent devices with improved stability, Appl. Phys. Lett. 69 (1996) 2160-2163.

DOI: 10.1063/1.117151

Google Scholar

[24] J.M. Auerhammer, M. Knupfer, H. Peisert and J. Fink, The copper phthalocyanine / Au (100) interface studied using high resolution electron energy-loss spectroscopy, Surf. Sci. 506 (2002) 333-338.

DOI: 10.1016/s0039-6028(02)01517-0

Google Scholar

[25] H.S. Virk, V. Balouria and K. Kishore, Fabrication of Copper Nanowires by Electrodeposition using Anodic Alumina and Polymer Templates, J. Nano Res. 10 (2010) 63-67.

DOI: 10.4028/www.scientific.net/jnanor.10.63

Google Scholar

[26] H.S. Virk, Fabrication and Characterization of Copper Nanowires, J. NanoSci. NanoEngg. & Applications, 1(1) (2011) 1-16.

Google Scholar

[27] H.S. Virk, Fabrication of polycrystalline copper nanowires by electrodeposition in anodic alumina membrane and their characterization, Nano Trends 9(1) (2010) 1-9.

Google Scholar

[28] H.S. Virk, Template growth of copper nanowires and exotic patterns of metallic copper using electrodeposition technique, Int. J. of Adv. Engg. Tech. (India) 2(3) (2011) 64-68.

Google Scholar

[29] H.S. Virk, Fabrication and characterization of metallic Copper and Copper Oxide nanoflowers, Pakistan J. of Chemistry 1(4) (2011) 1-7.

DOI: 10.15228/2011.v01.i04.p01

Google Scholar

[30] H.S. Virk, Fabrication and Characterization of Copper Nanowires, in: Abbass Hashim (Ed.), Nanowires – Implementations and Applications, 2011, pp.455-470. ISBN: 978-953-307-318-7, InTech Open Publishers, Rijeka, Available from: ttp://www.intechopen.com/articles/show

Google Scholar

[31] C.Y. Jiang, X.W. Sun, G.Q. Lo, D.L. Kwong and J.X. Wang, Improved dye-sensitized solar cells with a ZnO nanoflower photoanode, Appl. Phys. Lett. 90 (2007) 263501.

DOI: 10.1063/1.2751588

Google Scholar

[32] T.J. Hsueh and C.L. Hsu, Fabrication of gas sensing devices with ZnO nanostructure by the low- temperature oxidation of zinc particles, Sensors & Actuators B Chem. 131(2) (2008) 572-576.

DOI: 10.1016/j.snb.2007.12.045

Google Scholar

[33] C. Ge, Z. Bai, M. Hu, D. Zeng, S. Cai and C. Xie, Preparation and gas-sensing property of ZnO nanorod-bundle thin films, Mater. Lett. 62(15) (2008) 2307-2310.

DOI: 10.1016/j.matlet.2007.11.073

Google Scholar

[34] C. Li, G. Fang, N. Liu, Y. Ren, H. Huang and X. Zhao, Snowflake-like ZnO structures: Self- assembled growth and characterization. Mater. Lett. 62(12) (2008) 1761-1764.

DOI: 10.1016/j.matlet.2007.10.009

Google Scholar

[35] J. Wang, S. Zhang, J. You, H. Yan, Z. Li, X. Jing and M. Zhang, ZnO nanostructured microspheres and grown structures by thermal treatment, Bull. Mater. Sci. 31 (2008) 597-601.

DOI: 10.1007/s12034-008-0094-1

Google Scholar

[36] B. Wen, Y. Huang and J.J. Boland, Controllable Growth of ZnO Nanostructures by a Simple Solvothermal Process, J. Phys. Chem. C 112(1) 2008 106-111.

DOI: 10.1021/jp076789i

Google Scholar

[37] Z. Fang, K. Tang, G. Shen, D. Chen, R. Kong and S. Lei, Self-assembled ZnO 3D flower- like nanostructures, Mater. Lett. 60(20) (2006) 2530-2533.

DOI: 10.1016/j.matlet.2006.01.034

Google Scholar

[38] J. Zhang, Y. Yang, B. Xu, F. Jiang and J. Li, Shape-controlled synthesis of ZnO nano- and micro-structures. J. Cryst. Growth 280(3) (2005) 509-515.

DOI: 10.1016/j.jcrysgro.2005.04.003

Google Scholar

[39] S-H. Jung, O. Em, K-H. Lee, et al., Sonochemical preparation of shape-selective ZnO nanostructures, Crystal Growth Des. 8(1) (2008) 265-269.

Google Scholar

[40] R. Wahab, S.G. Ansari, Y.S. Kim, et al., Low temperature solution synthesis and characterization of ZnO nano-flowers. Mater. Res. Bull. 42(9) (2007) 1640-1648.

DOI: 10.1016/j.materresbull.2006.11.035

Google Scholar

[41] Y.D. Tretyakov (Ed.), Nanotechnologies. The alphabet for everyone (in Russian), Fizmatlit 2008, pp.344-345.[42] H.Y. Feng, M.G. Wen, Z. Ye, et al., Tuning the architecture of MgO nanostructures by chemical vapour transport and condensation, Nanotechnology 17(19) (2006) 5006-5012.

DOI: 10.1088/0957-4484/17/19/039

Google Scholar

[43] F. Xiao-Sheng, Y. Chang-Hui Y, X. Ting, et al., Regular MgO nanoflowers and their enhanced dielectric responses, Appl. Phys. Lett. 88 (2006) 013101.

Google Scholar

[44] X-S Fang, C-H Ye, L-D Zhang, J-X Zhang, J-W Zhao and P. Yan, Direct observation of the growth process of MgO nanoflowers by a simple chemical route, Small 1(4) (2005) 422-428.

DOI: 10.1002/smll.200400087

Google Scholar

[45] Y.B. Li, Y. Bando and D. Golberg, MoS2 nanoflowers and their field-emission properties, Appl. Phys. Lett. 82(12) (2003) 1962-1964.

DOI: 10.1063/1.1563307

Google Scholar

[46] R. Wei, H. Yang, K. Du, et al., A facile method to prepare MoS2with nanoflower-like morphology, Mater. Chem. Phys. 108(2-3) (2008) 188-191.

Google Scholar

[47] B.D. Liu, Y. Bando, C.C. Tang, D. Golberg, R.G. Xie and T. Sekiguchi, Synthesis and optical study of crystalline GaP nanoflowers, Appl. Phys. Lett. 86 (2005) 083107.

DOI: 10.1063/1.1875732

Google Scholar

[48] C. Felipe, F. Chavez, C. Angeles-Chavez, E. Lima, O. Goiz and R. Pena-Sierra, Morphology of nanostructured GaP on GaAs: Synthesis by the close-spaced vapor transport technique, Chem. Phys. Lett. 439(1) (2007) 127-131.

DOI: 10.1016/j.cplett.2007.03.072

Google Scholar

[49] K. Chybczynska, P. Lawniczak, B. Hilczer, B. Leska, R. Pankiewicz, A. Pietraszko, L. Kepinski, T. Kaluski, P. Cieluch, F. Matelski, B. Andrzejewski, Synthesis and Properties of Bismuth Ferrite Multiferroic Nanoflowers, arXiv:1212.2538 [cond-mat.mtrl-sci] 11 Dec 2012.

DOI: 10.1109/isaf.2012.6297811

Google Scholar

[50] M. Fiebig, Revival of magnetoelectric effect, J. Phys. D: Appl. Phys. 38 (2005) R123-R152.

DOI: 10.1088/0022-3727/38/8/r01

Google Scholar

[51] A.M. Kadomtseva, Yu. F. Popov, A.P. Pyatakov, G.P. Vorobev, A.K. Zvezdin, D. Viehland, Phase transitions in multiferroic BiFeO3 crystals, thin-layers and ceramics: enduring potential for a single phase, room-temperature magnetoelectric "holy grail", Phase Trans. 79 (2006) 1019-1042.

DOI: 10.1080/01411590601067235

Google Scholar

[52] D. Lebeugle, D. Colson, A. Forget, M. Viret, P. Boville, J.M. Marucco, S. Fusil, Room temperature co-existence of large electric polarization and magnetic order in BiFeO3 single crystals. Phys. Rev. B 76 (2007) 024116-1-8.

DOI: 10.1063/1.2753390

Google Scholar

[53] G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite, Adv. Mat. 21 (2009) 2463-2485.

Google Scholar

[54] T. Gao, G. Meng, Y. Wang, S. Sun and L.J. Zhang, Electrochemical synthesis of copper nanowires, Physics: Condensed Matter, 14 (2002) 355-363.

DOI: 10.1088/0953-8984/14/3/306

Google Scholar

[55] S. Kumar, V. Kumar, M.L. Sharma and S.K. Chakarvarti, Electrochemical synthesis of metallic micro-rose having petals in nanometer dimensions, Superlatt. & Microstr. 43 (2008) 324-329.

DOI: 10.1016/j.spmi.2008.01.005

Google Scholar

[56] T. Erdey-Gruz and M.Z. Volmer, Phys. Chem. 150A (1930) 203-213.

Google Scholar

[57] L.G. Yu, G.M. Zhang, Y. Wu, X. Bai and D.Z. Guo, Cupric oxide nanoflowers synthesized with a simple solution route and their field emission, J. Cryst. Growth 310 (2008) 3125-3130.

DOI: 10.1016/j.jcrysgro.2008.03.026

Google Scholar

[58] X.F. Yang, C.J. Jin, C.L. Liang, D.H. Chen, M.M Wu and J.C. Yu, Nanoflower arrays of rutile TiO2, Chem. Commun. 47 (2011) 1184-1186.

DOI: 10.1039/c0cc04216a

Google Scholar

[59] C. Liang, W. Zhao, X. Yang, M. Wu and Y. Tong, Applications of High Resolution Electron Microscopy in Structural Analysis of Nanoarrays, in: A. Méndez-Vilas (Ed.) Current Microscopy Contributions to Advances in Science and Technology, © FORMATEX (2012) 1271-1282.

Google Scholar

[60] J. Zhu, G. Zeng, F. Nie, X. Xu, S. Chen, Q. Han and X. Wang, Decorating graphene oxide with CuO nanoparticles in a water–isopropanol system, Nanoscale 2(6) (2010) 988-994.

DOI: 10.1039/b9nr00414a

Google Scholar

[61] F. Teng, W.Q. Yao, Y.F. Zheng, Y.T. Ma, Y. Teng, T.G. Xu, S.H. Liang, and Y.F. Zhu, Synthesis of flower-like CuO nanostructures as a sensitive sensor for catalysis, Sensors & Actuators B, 134 (2008) 761-768.

DOI: 10.1016/j.snb.2008.06.023

Google Scholar

[62] R.T. Downs and M. Hall-Wallace, The American Mineralogist Crystal Structure Database, American Mineralogist, 88 (2003) 247-250.

Google Scholar

[63] K. Zhang, N. Zhang, H. Cao and C. Wang, A novel non-enzyme hydrogen peroxide sensor based on an electrode modified with carbon nanotube-wired CuO nanoflowers, Microchimica Acta (2011).

DOI: 10.1007/s00604-011-0708-y

Google Scholar

[64] Jiang LC, Zhang WD (2010) highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens Bioelectron 25:1402

DOI: 10.1016/j.bios.2009.10.038

Google Scholar

[65] Fang B, Zhang CH, Zhang W, Wang GF (2009) A novel hydrazine electrochemical sensor based on a carbon nanotube-wired ZnO nanoflower-modified electrode, Electrochim. Acta 55 (2009) 178.

DOI: 10.1016/j.electacta.2009.08.036

Google Scholar

[66] Y. Jiang, X.W. Sun, S.Q. Lo, D.L. Kwong and J.X. Wang, Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode , Appl. Phys. Lett. 90 (2007) 263501.

DOI: 10.1063/1.2751588

Google Scholar

[67] V. Dhas, S. Muduli, W. Lee, S-H. Han and S. Ogale, Enhanced conversion efficiency in dye- sensitized solar cells based on ZnO bifunctional nanoflowers loaded with gold nanoparticles, Appl. Phys. Lett. 93 (2008) 243108, http://dx.doi.org/10.1063/1.3049131 (3 pages)

DOI: 10.1063/1.3049131

Google Scholar