[1]
B.I. Kharisov, Recent Patents on Nanotechnology, 2 (3) (2008) 190-200.
Google Scholar
[2]
O.V. Kharissova and B.I. Kharisov, Recent Patents on Nanotechnology, 2(2) (2008) 103-119.
Google Scholar
[3]
O.V. Kharissova, B.I. Kharisov, T.H. Garcia and U.O. Mendez, Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, 39 (2009) 662-684.
DOI: 10.1080/15533170903433196
Google Scholar
[4]
B.I. Kharisov and O.V. Kharissova, Less-common nanostructures in the forms of vegetation, Ind. Eng. Chem. Res. 49 (2010) 11142-11160.
DOI: 10.1021/ie1017139
Google Scholar
[5]
Y. Zou, Y. Li, N. Zhang and J. Li, Prepared of flower-like CuO via CTAB-assisted hydrothermal method, Adv. Mater. Res. 152-153 (2011) 909-914.
DOI: 10.4028/www.scientific.net/amr.152-153.909
Google Scholar
[6]
M.H. Cao, C.W. Hu, Y.H. Wang, Y.H. Guo, C.X. Guo and E.B. Wang, A controllable synthetic route to Cu, Cu2O and CuO nanotubes and nanorods, Chem. Comm. 15 (2003) 1884-1885.
DOI: 10.1039/b304505f
Google Scholar
[7]
J.H. Schon, M. Dorget, F.C. Beuran, X.Z. Zu, E. Arushanov, C.D. Cavellin and M. Lagues, Superconductivity in CaCuO2 as a result of field-effect doping, Nature, 414 (2001) 434-436.
DOI: 10.1038/35106539
Google Scholar
[8]
Y. Li, J. Liang, Z. Tao and J. Chen, CuO particles and plates: Synthesis and gas-sensor application, Mater. Res. Bull. 43 (2008) 2380-2385.
DOI: 10.1016/j.materresbull.2007.07.045
Google Scholar
[9]
J.B. Reitz and E.I. Solomon, Propylene oxidation on copper oxide surfaces: electronic and geometric contributions to reactivity and selectivity, J. Am. Chem. Soc. 120 (1998) 11467-11478.
DOI: 10.1021/ja981579s
Google Scholar
[10]
J. Ziolo, F. Borsa, M. Corti, A. Rigamonti and F. Parmigiani, Cu nuclear quadrupole resonance and magnetic phase transition in CuO, J. Appl. Phys. 67 (1990) 5864-5866.
DOI: 10.1063/1.345996
Google Scholar
[11]
X.P. Gao, J.L. Bao, G.L. Pan, H.Y. Zhu, P.X. Huang, F. Wu and D.Y. Song, Preparation and Electrochemical Performance of Polycrystalline and Single Crystalline CuO Nanorods as Anode Materials for Li Ion Battery, J. Phys. Chem. B 108 (2004) 5547-5551.
DOI: 10.1021/jp037075k
Google Scholar
[12]
A. Gu, G. Wang, X. Zhang and B. Fang, Synthesis of CuO nanoflower and its application as a H2O2 sensor, Bull. Mater. Sci. 33 (1) (2010) 17–20.
DOI: 10.1007/s12034-010-0002-3
Google Scholar
[13]
J. Ge, J. Lei and R.N. Zare, Protein–inorganic hybrid nanoflowers, Nature Nanotech. 7 (2012) 428-432.
DOI: 10.1038/nnano.2012.80
Google Scholar
[14]
S. Karan, D. Basik and B. Mallik, Copper phthalocyanine nanoparticles and nanoflowers, Chem. Phys. Lett. 434 (2007) 265–270.
DOI: 10.1016/j.cplett.2006.12.007
Google Scholar
[15]
E. Jungyoon, S. Kim, E. Lim, K. Lee, D. Cha and B. Friedman, Effects of substrate temperature on copper (II) phthalocynine thin films, Appl. Surf. Sci. 205 (2003) 274-279.
DOI: 10.1016/s0169-4332(02)01115-7
Google Scholar
[16]
Y. Choe, S.Y. Park, D.W. Park and W. Kim, Influence of a Stacked-CuPc Layer on the Performance of Organic Light-Emitting Diodes, Macrmol. Res. 14 (2006) 38-44.
DOI: 10.1007/bf03219066
Google Scholar
[17]
I. Biswas, H. Peisert, M. Nagel, M. B. Casu, S. Schuppler, P. Nagel, E. Pellegrin, T. Chassé, Buried interfacial layer of highly oriented molecules in copper phthalocyanine thin films on polycrystalline gold, J. Chem. Phys. 126 (20070 174704/1-5.
DOI: 10.1063/1.2727476
Google Scholar
[18]
H. Peisert, I. Biswas, L. Zhang, M. Knupfer, M. Hanack, D. Dini, M. Cook, I. Chambrier, T.Schmidt, D. Batchelor, T. Chassé, Orientation of substituted phthalocyanines on polycrystalline gold: distinguishing between the first layers and thin films, Chem. Phys. Lett. 403 (2005) 1.
DOI: 10.1016/j.cplett.2004.12.039
Google Scholar
[19]
C.C. Leznoff and A.B.P. Lever, Phthalocyanines, Properties and applications, Vol.3, VCH, New York, 1993.
Google Scholar
[20]
F. Young, M. Shtein and S.R. Forrest, Controlled growth of a molecular bulk heterojunction photovoltaic cell, Nature Mater. 4(1) (2005) 37-41.
DOI: 10.1038/nmat1285
Google Scholar
[21]
R. Koshy and C.S. Menon, Effect of Vacuum Annealing on the Optoelectric and Morphological Properties of F16CuPc Thin Films, E-Journal of Chemistry 9(1) (2012) 294-300, http://www.e-journals.net.
DOI: 10.1155/2012/101686
Google Scholar
[22]
K. Kudo, K. Shimada, K. Marugami, M. Iizuka, S. Kuniyoshi and K. Tanaka, Organic static induction transistor for color sensors, Synth. Metals 102 (1999) 900-903.
DOI: 10.1016/s0379-6779(98)00381-6
Google Scholar
[23]
S.A. Van Slyke, C.H. Chen and C.W. Tang, Organic electroluminescent devices with improved stability, Appl. Phys. Lett. 69 (1996) 2160-2163.
DOI: 10.1063/1.117151
Google Scholar
[24]
J.M. Auerhammer, M. Knupfer, H. Peisert and J. Fink, The copper phthalocyanine / Au (100) interface studied using high resolution electron energy-loss spectroscopy, Surf. Sci. 506 (2002) 333-338.
DOI: 10.1016/s0039-6028(02)01517-0
Google Scholar
[25]
H.S. Virk, V. Balouria and K. Kishore, Fabrication of Copper Nanowires by Electrodeposition using Anodic Alumina and Polymer Templates, J. Nano Res. 10 (2010) 63-67.
DOI: 10.4028/www.scientific.net/jnanor.10.63
Google Scholar
[26]
H.S. Virk, Fabrication and Characterization of Copper Nanowires, J. NanoSci. NanoEngg. & Applications, 1(1) (2011) 1-16.
Google Scholar
[27]
H.S. Virk, Fabrication of polycrystalline copper nanowires by electrodeposition in anodic alumina membrane and their characterization, Nano Trends 9(1) (2010) 1-9.
Google Scholar
[28]
H.S. Virk, Template growth of copper nanowires and exotic patterns of metallic copper using electrodeposition technique, Int. J. of Adv. Engg. Tech. (India) 2(3) (2011) 64-68.
Google Scholar
[29]
H.S. Virk, Fabrication and characterization of metallic Copper and Copper Oxide nanoflowers, Pakistan J. of Chemistry 1(4) (2011) 1-7.
DOI: 10.15228/2011.v01.i04.p01
Google Scholar
[30]
H.S. Virk, Fabrication and Characterization of Copper Nanowires, in: Abbass Hashim (Ed.), Nanowires – Implementations and Applications, 2011, pp.455-470. ISBN: 978-953-307-318-7, InTech Open Publishers, Rijeka, Available from: ttp://www.intechopen.com/articles/show
Google Scholar
[31]
C.Y. Jiang, X.W. Sun, G.Q. Lo, D.L. Kwong and J.X. Wang, Improved dye-sensitized solar cells with a ZnO nanoflower photoanode, Appl. Phys. Lett. 90 (2007) 263501.
DOI: 10.1063/1.2751588
Google Scholar
[32]
T.J. Hsueh and C.L. Hsu, Fabrication of gas sensing devices with ZnO nanostructure by the low- temperature oxidation of zinc particles, Sensors & Actuators B Chem. 131(2) (2008) 572-576.
DOI: 10.1016/j.snb.2007.12.045
Google Scholar
[33]
C. Ge, Z. Bai, M. Hu, D. Zeng, S. Cai and C. Xie, Preparation and gas-sensing property of ZnO nanorod-bundle thin films, Mater. Lett. 62(15) (2008) 2307-2310.
DOI: 10.1016/j.matlet.2007.11.073
Google Scholar
[34]
C. Li, G. Fang, N. Liu, Y. Ren, H. Huang and X. Zhao, Snowflake-like ZnO structures: Self- assembled growth and characterization. Mater. Lett. 62(12) (2008) 1761-1764.
DOI: 10.1016/j.matlet.2007.10.009
Google Scholar
[35]
J. Wang, S. Zhang, J. You, H. Yan, Z. Li, X. Jing and M. Zhang, ZnO nanostructured microspheres and grown structures by thermal treatment, Bull. Mater. Sci. 31 (2008) 597-601.
DOI: 10.1007/s12034-008-0094-1
Google Scholar
[36]
B. Wen, Y. Huang and J.J. Boland, Controllable Growth of ZnO Nanostructures by a Simple Solvothermal Process, J. Phys. Chem. C 112(1) 2008 106-111.
DOI: 10.1021/jp076789i
Google Scholar
[37]
Z. Fang, K. Tang, G. Shen, D. Chen, R. Kong and S. Lei, Self-assembled ZnO 3D flower- like nanostructures, Mater. Lett. 60(20) (2006) 2530-2533.
DOI: 10.1016/j.matlet.2006.01.034
Google Scholar
[38]
J. Zhang, Y. Yang, B. Xu, F. Jiang and J. Li, Shape-controlled synthesis of ZnO nano- and micro-structures. J. Cryst. Growth 280(3) (2005) 509-515.
DOI: 10.1016/j.jcrysgro.2005.04.003
Google Scholar
[39]
S-H. Jung, O. Em, K-H. Lee, et al., Sonochemical preparation of shape-selective ZnO nanostructures, Crystal Growth Des. 8(1) (2008) 265-269.
Google Scholar
[40]
R. Wahab, S.G. Ansari, Y.S. Kim, et al., Low temperature solution synthesis and characterization of ZnO nano-flowers. Mater. Res. Bull. 42(9) (2007) 1640-1648.
DOI: 10.1016/j.materresbull.2006.11.035
Google Scholar
[41]
Y.D. Tretyakov (Ed.), Nanotechnologies. The alphabet for everyone (in Russian), Fizmatlit 2008, pp.344-345.[42] H.Y. Feng, M.G. Wen, Z. Ye, et al., Tuning the architecture of MgO nanostructures by chemical vapour transport and condensation, Nanotechnology 17(19) (2006) 5006-5012.
DOI: 10.1088/0957-4484/17/19/039
Google Scholar
[43]
F. Xiao-Sheng, Y. Chang-Hui Y, X. Ting, et al., Regular MgO nanoflowers and their enhanced dielectric responses, Appl. Phys. Lett. 88 (2006) 013101.
Google Scholar
[44]
X-S Fang, C-H Ye, L-D Zhang, J-X Zhang, J-W Zhao and P. Yan, Direct observation of the growth process of MgO nanoflowers by a simple chemical route, Small 1(4) (2005) 422-428.
DOI: 10.1002/smll.200400087
Google Scholar
[45]
Y.B. Li, Y. Bando and D. Golberg, MoS2 nanoflowers and their field-emission properties, Appl. Phys. Lett. 82(12) (2003) 1962-1964.
DOI: 10.1063/1.1563307
Google Scholar
[46]
R. Wei, H. Yang, K. Du, et al., A facile method to prepare MoS2with nanoflower-like morphology, Mater. Chem. Phys. 108(2-3) (2008) 188-191.
Google Scholar
[47]
B.D. Liu, Y. Bando, C.C. Tang, D. Golberg, R.G. Xie and T. Sekiguchi, Synthesis and optical study of crystalline GaP nanoflowers, Appl. Phys. Lett. 86 (2005) 083107.
DOI: 10.1063/1.1875732
Google Scholar
[48]
C. Felipe, F. Chavez, C. Angeles-Chavez, E. Lima, O. Goiz and R. Pena-Sierra, Morphology of nanostructured GaP on GaAs: Synthesis by the close-spaced vapor transport technique, Chem. Phys. Lett. 439(1) (2007) 127-131.
DOI: 10.1016/j.cplett.2007.03.072
Google Scholar
[49]
K. Chybczynska, P. Lawniczak, B. Hilczer, B. Leska, R. Pankiewicz, A. Pietraszko, L. Kepinski, T. Kaluski, P. Cieluch, F. Matelski, B. Andrzejewski, Synthesis and Properties of Bismuth Ferrite Multiferroic Nanoflowers, arXiv:1212.2538 [cond-mat.mtrl-sci] 11 Dec 2012.
DOI: 10.1109/isaf.2012.6297811
Google Scholar
[50]
M. Fiebig, Revival of magnetoelectric effect, J. Phys. D: Appl. Phys. 38 (2005) R123-R152.
DOI: 10.1088/0022-3727/38/8/r01
Google Scholar
[51]
A.M. Kadomtseva, Yu. F. Popov, A.P. Pyatakov, G.P. Vorobev, A.K. Zvezdin, D. Viehland, Phase transitions in multiferroic BiFeO3 crystals, thin-layers and ceramics: enduring potential for a single phase, room-temperature magnetoelectric "holy grail", Phase Trans. 79 (2006) 1019-1042.
DOI: 10.1080/01411590601067235
Google Scholar
[52]
D. Lebeugle, D. Colson, A. Forget, M. Viret, P. Boville, J.M. Marucco, S. Fusil, Room temperature co-existence of large electric polarization and magnetic order in BiFeO3 single crystals. Phys. Rev. B 76 (2007) 024116-1-8.
DOI: 10.1063/1.2753390
Google Scholar
[53]
G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite, Adv. Mat. 21 (2009) 2463-2485.
Google Scholar
[54]
T. Gao, G. Meng, Y. Wang, S. Sun and L.J. Zhang, Electrochemical synthesis of copper nanowires, Physics: Condensed Matter, 14 (2002) 355-363.
DOI: 10.1088/0953-8984/14/3/306
Google Scholar
[55]
S. Kumar, V. Kumar, M.L. Sharma and S.K. Chakarvarti, Electrochemical synthesis of metallic micro-rose having petals in nanometer dimensions, Superlatt. & Microstr. 43 (2008) 324-329.
DOI: 10.1016/j.spmi.2008.01.005
Google Scholar
[56]
T. Erdey-Gruz and M.Z. Volmer, Phys. Chem. 150A (1930) 203-213.
Google Scholar
[57]
L.G. Yu, G.M. Zhang, Y. Wu, X. Bai and D.Z. Guo, Cupric oxide nanoflowers synthesized with a simple solution route and their field emission, J. Cryst. Growth 310 (2008) 3125-3130.
DOI: 10.1016/j.jcrysgro.2008.03.026
Google Scholar
[58]
X.F. Yang, C.J. Jin, C.L. Liang, D.H. Chen, M.M Wu and J.C. Yu, Nanoflower arrays of rutile TiO2, Chem. Commun. 47 (2011) 1184-1186.
DOI: 10.1039/c0cc04216a
Google Scholar
[59]
C. Liang, W. Zhao, X. Yang, M. Wu and Y. Tong, Applications of High Resolution Electron Microscopy in Structural Analysis of Nanoarrays, in: A. Méndez-Vilas (Ed.) Current Microscopy Contributions to Advances in Science and Technology, © FORMATEX (2012) 1271-1282.
Google Scholar
[60]
J. Zhu, G. Zeng, F. Nie, X. Xu, S. Chen, Q. Han and X. Wang, Decorating graphene oxide with CuO nanoparticles in a water–isopropanol system, Nanoscale 2(6) (2010) 988-994.
DOI: 10.1039/b9nr00414a
Google Scholar
[61]
F. Teng, W.Q. Yao, Y.F. Zheng, Y.T. Ma, Y. Teng, T.G. Xu, S.H. Liang, and Y.F. Zhu, Synthesis of flower-like CuO nanostructures as a sensitive sensor for catalysis, Sensors & Actuators B, 134 (2008) 761-768.
DOI: 10.1016/j.snb.2008.06.023
Google Scholar
[62]
R.T. Downs and M. Hall-Wallace, The American Mineralogist Crystal Structure Database, American Mineralogist, 88 (2003) 247-250.
Google Scholar
[63]
K. Zhang, N. Zhang, H. Cao and C. Wang, A novel non-enzyme hydrogen peroxide sensor based on an electrode modified with carbon nanotube-wired CuO nanoflowers, Microchimica Acta (2011).
DOI: 10.1007/s00604-011-0708-y
Google Scholar
[64]
Jiang LC, Zhang WD (2010) highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens Bioelectron 25:1402
DOI: 10.1016/j.bios.2009.10.038
Google Scholar
[65]
Fang B, Zhang CH, Zhang W, Wang GF (2009) A novel hydrazine electrochemical sensor based on a carbon nanotube-wired ZnO nanoflower-modified electrode, Electrochim. Acta 55 (2009) 178.
DOI: 10.1016/j.electacta.2009.08.036
Google Scholar
[66]
Y. Jiang, X.W. Sun, S.Q. Lo, D.L. Kwong and J.X. Wang, Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode , Appl. Phys. Lett. 90 (2007) 263501.
DOI: 10.1063/1.2751588
Google Scholar
[67]
V. Dhas, S. Muduli, W. Lee, S-H. Han and S. Ogale, Enhanced conversion efficiency in dye- sensitized solar cells based on ZnO bifunctional nanoflowers loaded with gold nanoparticles, Appl. Phys. Lett. 93 (2008) 243108, http://dx.doi.org/10.1063/1.3049131 (3 pages)
DOI: 10.1063/1.3049131
Google Scholar