Effect of Magnetic Field on the Growth of Aligned Carbon Nanotubes Using a Metal Free Arc Discharge Method and their Purification

Article Preview

Abstract:

Multiwalled Carbon Nanotubes (MWCNTs) have been synthesized using a low cost arc discharge method without using metal catalyst and vacuum devices. Effect of magnetic field on the synthesis of MWCNTs and their purity has been scrutinized. A magnetic field of 310 gauss has been found to give better purity of carbon nanotubes as confirmed by Raman spectroscopy. However, the removal of amorphous carbon from the surface of so prepared multiwalled carbon nanotubes has been achieved by different oxidizing conditions. It has been observed that the maximum removal of amorphous carbon found by using the strong oxidizing agent HNO3/H2O2. This strong oxidizing agent HNO3/H2O2 removes most of the carbonaceous impurities leading to thermal stability of carbon nanotubes suggested by thermo gravimetric analysis. X-ray diffraction show the formation of carbon nanotubes having a peak indexed at (002) as the fingerprint for multiwalled carbon nanotubes. Fourier Transform Infrared (FTIR) spectra confirmed the formation of the multiwalled carbon nanotubes showing a characteristic stretching band at 1615 cm-1 corresponding to the C=C bonds of tubular carbon. Raman spectroscopy revealed invaluable insights into the purification of nanotubes. G-band (1577 cm-1) corresponds to the confirmation of MWCNTs. Defect induced D-band (1355 cm-1) has been minimized after purifying CNTs with HNO3/H2O2 for 24 hrs. Transmission Electron microscopic (TEM) studies indicate the formation of CNTs with controlled alignment having diameter in the range 2-8 nm.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 201)

Pages:

197-209

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. A. M. Motchelaho, H. Xiong, M. Moyo, L. L. Jewella, N. J. Coville, Effect of acid treatment on the surface of multiwalled carbon nanotubes prepared from Fe–Co supported on CaCO3: Correlation with Fischer–Tropsch catalyst activity, J. Mol. Catal. A: Chem. 335 (2011) 189-198.

DOI: 10.1016/j.molcata.2010.11.033

Google Scholar

[2] J. Tkac, J.W. Whittaker, T. Ruzgas, The use of single walled carbon nanotubes dispersed in a chitosan matrix for preparation of a galactose biosensor, Biosens. Bioelectron. 22 (2007) 1820–1824.

DOI: 10.1016/j.bios.2006.08.014

Google Scholar

[3] Bachtold, P. Hadley, T. Nakanishi, C. Dekker, Logic Circuits with Carbon Nanotube Transistors, Science 294 (2001) 1317-1320.

DOI: 10.1126/science.1065824

Google Scholar

[4] V. Derycke, R. Martel, J. Appenzeller, Ph. Avouris, Carbon Nanotube Inter- and Intramolecular Logic Gates, Nano Lett. 1 (2001) 453-456.

DOI: 10.1021/nl015606f

Google Scholar

[5] W.Feng, A. Fujii, M. Ozaki, K. Yoshino, Perylene derivative sensitized multi-walled carbon nanotube thin film, Carbon 43 (2005) 2501–2507.

DOI: 10.1016/j.carbon.2005.05.014

Google Scholar

[6] J. L. Zimmermen, R. K. Bradley, C. B. Huffman, R. H. Hange, J. L. Margrave, Gas-Phase Purification of Single-Wall Carbon Nanotubes, Chem. Mater. 12 (2000) 1361-1366.

DOI: 10.1021/cm990693m

Google Scholar

[7] K. B. Shelimov, R. O. Esenaliev, A. G. Rinzler, C. B. Huffman, R. E. Smalley, Purification of single-wall carbon nanotubes by ultrasonically assisted filtration, Chem. Phys. Lett. 282 (1998) 429-434.

DOI: 10.1016/s0009-2614(97)01265-7

Google Scholar

[8] B. Zhao, H.Hu, S. Nlyogi, M. E. Itkis, M. A. Hamon, P. Bhowmik, M. S. Meier, R. C. Haddon, Chromatographic purification and properties of soluble single-walled carbon nanotubes, J. Am. Chem. Soc. 123 (2001) 11673-11677.

DOI: 10.1021/ja010488j

Google Scholar

[9] V. Geogakilas, D. Voulgaris, E. Vazquez, M. Prato, D. M. Guldi, A. Kukovecz, H. Kuzmany, Purification of hipco carbon nanotubes via organic functionalization, J. Am. Chem. Soc. 124 (2002) 14318-14319.

DOI: 10.1021/ja0260869

Google Scholar

[10] L. Stobinski, B. Lesiak, L. Kover, J. Toth, S. Biniak, G. Trykowski, J. Judek, Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods, J. Alloys Compd. 501 (2010) 77-84.

DOI: 10.1016/j.jallcom.2010.04.032

Google Scholar

[11] S. R. C. Vivekchand, A. Govindaraj, M. M. Seikh, C. N. R. Rao, New Method of Purification of Carbon Nanotubes Based on Hydrogen Treatment, J. Phys. Chem. B 108 (2004) 6935-6937.

DOI: 10.1021/jp048737o

Google Scholar

[12] Y-Y Fan, A. Kaufmann, A. Mukasyan, A. Varma, Single- and multi-wall carbon nanotubes produced using the floating catalyst method: Synthesis, purification and hydrogen up-take, Carbon 44 (2006) 2160-2170.

DOI: 10.1016/j.carbon.2006.03.009

Google Scholar

[13] R. Rastogi, R. Kaushal, S.K. Tripathi, A. L. Sharma, Inderpreet Kaur, L. M. Bharadwaj, Comparative study of carbon nanotube dispersion using surfactants; Journal of Colloid and Interface Science 328 (2008) 421–428.

DOI: 10.1016/j.jcis.2008.09.015

Google Scholar

[14] Y. Feng, H. Zhang, Y. Hou, T. P. McNicholas, D. Yuan, S. Yang, L. Ding, W. Feng, J. Liu, Room Temperature Purification of Few-Walled Carbon Nanotubes with High Yield, ACS Nano 2 (2008) 1634-1638.

DOI: 10.1021/nn800388g

Google Scholar

[15] M. C. Schabel, J. L. Martinus, Energetics of interplanar binding in graphite, Phys. Rev. B 46 (1992) 7185-7188.

DOI: 10.1103/physrevb.46.7185

Google Scholar

[16] J. Logeswari, A. Pandurangan, D. Sangeetha, An Efficient Catalyst for the Large Scale Production of Multi-Walled Carbon Nanotubes, Ind. Eng. Chem. Res. 50 (2011) 13347-13354.

DOI: 10.1021/ie102525u

Google Scholar

[17] R.Yudianti, L. Indrarti, H. Onggo; J. Appl. Sci. 17 (2010) 1978-1982.

Google Scholar

[18] A. K. Mishra, S. Ramaprabhu, Carbon dioxide adsorption in graphene sheets, AIP Adv. 1 (2011) 032152-032158.

DOI: 10.1063/1.3638178

Google Scholar

[19] A. C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects, Solid State Communications 143, (2007) 47-57.

DOI: 10.1016/j.ssc.2007.03.052

Google Scholar

[20] X. Zhao and Y. Ando, Raman Spectra and X-Ray Diffraction Patterns of Carbon Nanotubes Prepared by Hydrogen Arc Discharge, J.Appl. Phys. 37, (1998) 4846-4849.

DOI: 10.1143/jjap.37.4846

Google Scholar

[21] J. Maultzsch, S. Reich, C. Thomsen, S. Webster, R. Czerw, D. L. Carroll, S. M. C. Vieira, P. R. Birkett, C. A. Rego, Raman characterization of boron-doped multiwalled carbon nanotubes, Appl. Phys. Lett. 81 (2002) 2647–2649.

DOI: 10.1063/1.1512330

Google Scholar