Photo-and Electro-Luminescence in Copper Doped Zinc Sulphide Nanoparticles and Nanocomposites

Article Preview

Abstract:

Copper doped Zinc Sulfide (ZnS:Cu)) is a known green light emitter. Present paper reports luminescence of ZnS:Cu nanoparticles and nanocomposites. Three different nanostructures: mercaptoethanol capped ZnS:Cu nanoparticles, polyvinyl alcohol (PVA) capped ZnS:Cu nanoparticles and ZnS:Cu/PVA nanocomposites have been prepared by chemical route. X-ray diffraction (XRD) revealed cubic zinc blende structure of ZnS:Cu nanocrystals of size below 20 nm. The particle size is found to decrease with increasing capping agent concentration or ZnS loading in PVA matrix. Optical absorption spectra show blue shift in the absorption edge indicating quantum size effect. Photoluminescence (PL) of all the samples was studied by exciting with 212 nm light. The PL spectra of ZnS:Cu/ PVA nanocomposite films show quite broad emission peak at 415 nm where as the PL spectra of mercaptoethanol capped and PVA capped nanoparticles show a very narrow peak at 426 nm and 403 nm respectively. It seems that the nature of passivation of surface states affects the position of surface states. Electroluminescence (EL) studies have shown that light emission starts at a threshold and then increases with voltage. Higher EL intensity and lower threshold voltage is obtained in case of smaller particles. The EL spectra of all the samples are found to be broad with peak at about 420 nm. The EL intensity of ZnS:Cu/PVA nanocomposites is much larger than the ZnS:Cu nanoparticles. The high efficiency EL devices for display and lighting can be fabricated using ZnS:Cu nanocomposites with PVA matrix giving violet emission.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 201)

Pages:

181-196

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Burda, X. Chen, R. Naraynan, M.A. El-Sayed, Chemistry and properties of nanocrystals of different shapes, Chem. Rev. 105, (2005), 1025-1102.

DOI: 10.1021/cr030063a

Google Scholar

[2] C.N.R. Rao, G.U. Kulkarni, J. P. Thomas, P.P. Edwards, Size-dependent chemistry: properties of nanocrystals, Chem. Eur. J. 8, (2002), 28-35.

Google Scholar

[3] Y. Wang and N. Herron, photoconductivity of CdS nanoclusters-doped polymers, Chem. Phys. Lett. 200, (1992), 71-75.

Google Scholar

[4] D.J. Norris, N. Yao, F.T. Charnock, T.A. Kennedy, High-quality mangnese-doped ZnSe nanocrystals, Nano Lett. 1, (2001), 3-7.

DOI: 10.1021/nl005503h

Google Scholar

[5] N. Pradhan, D. Goorskey, J. Thessing, X.G. Peng, Synthesis and characterization of pure and alkali, J. Am. Chem. Soc. 127, (2005), 7586-7589.

Google Scholar

[6] N. Pardhan, X.G. Peng, Efficient and color-tunable Mn-doped ZnSe nanocrystals emitters: control of optical performance via greener synthetic chemistry, J. Am. Chem. Soc. 129, (2007), 3339-3347.

DOI: 10.1021/ja068360v

Google Scholar

[7] D.J. Norris, A.L. Efros, S.C. Erwin, Doped nanocrystals, Science, 319, (2008), 1776-1779.

DOI: 10.1126/science.1143802

Google Scholar

[8] R.G. Xie, X.G. Peng, Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters, J. Am. Chem. Soc. 131, (2009), 10645-10651.

DOI: 10.1021/ja903558r

Google Scholar

[9] T. Toyama, T. Hama, D. Adachi, An electroluminescence devices for printable electronics using co-precipitated ZnS:Mn nanocrystals ink, Nanotechnology, 20, (2009), 55203.

DOI: 10.1088/0957-4484/20/5/055203

Google Scholar

[10] S.H. Shin. J.H. Kang, D.Y. Jeon, D.S. Zang, Effect of nanoscaled SnO2 coating on ZnS:Mn phosphors under electron irradiation, J. Solid. State Chem, 178, (2005), 2205-2210.

DOI: 10.1016/j.jssc.2005.04.032

Google Scholar

[11] Y. He, H.F. Wang, X.P. Yan, Self-assembly of octa (3-aminopropyl)-octasilequioxane octahydrochloride on Mn doped ZnS quantum dotsfor optosensing DNA, Chem. Eur. J. 15, (2009), 5436-5440.

DOI: 10.1002/chem.200900432

Google Scholar

[12] B.H. Dong, L.X. Cao, G. Su, W. Liu, H. Qu, D.X. Jiang, Synthesis and characterization of the water-soluble silica-coated ZnS:Mn nanoparticles as fluorescent sensor for Cu2+ ions, J. Colloid. Interface Sci. 339, (2009), 78-82.

DOI: 10.1016/j.jcis.2009.07.039

Google Scholar

[13] Web Page en.wikipedia.org/wiki/Phosphor. (2012)

Google Scholar

[14] J. Huang, Y. Yang, S. Xue, B. Yang, S. Liu, J. Shen, Photoluminescence and electroluminescence of ZnS:Cu nanocrystals in polymeric network, Appl. Phys. Lett. 67 (1997) 2335-2481.

Google Scholar

[15] S. Sahare and M. Ramrakhiani, Optical absorption and EL of Cu doped zinc sulphide nanocrystals, LAP Lambert Academic Publishing AG & Co KG, Saarbrucken, Germany; (2012).

Google Scholar

[16] G.S. Shekhawat, R.P. Gupta, A. Sharma, P.D. Vyas, Manganese doped zinc sulphide nanoparticles by aqueous method, Appl. Phys. Lett., 67(17), (1995), 2506-2508.

DOI: 10.1063/1.114440

Google Scholar

[17] G. Murugdas, B. Rajmanan and V. Ramasamy, Synthesis and photoluminescence study of PVA-capped ZnS:Mn2+ nanoparticles, Digest Journal of Nanomaterial and Biostructures, 5(2), (2010), 339-345.

Google Scholar

[18] K. Manzoor, S.R. Vadera, N. Kumar, T.R.N. Kutty, Synthesis and photoluminescence properties of ZnS nanocrystals doped with copper and halogen, Mater. Chem. Phys. 82, (2003), 718-725.

DOI: 10.1016/s0254-0584(03)00366-3

Google Scholar

[19] R. Sharma, H.S. Bhatti, Photoluminescence decay kinetics of doped ZnS nanophosphors, Nanotechnology, 18, (2007), 465703.

DOI: 10.1088/0957-4484/18/46/465703

Google Scholar

[20] A. Guinier, X-ray diffraction, W.H. Freeman, San Francisco (1963).

Google Scholar

[21] Kumbhojkar, V.V. Nilesh, A. Kshirsagar, Photophysical properties of ZnS nanoclusters, J. Appl. Phys., 88, (2000), 6260-6264.

DOI: 10.1063/1.1321027

Google Scholar

[22] W.Q. Peng, G.W. Cong, S.C. Qu and Z.G. Wang, Synthesis and photoluminescence of ZnS:Cu nanoparticles, Optical Material, 29, (2006), 313-317.

Google Scholar

[23] S. Lee, D. Song, D. kim, J. Lee, S. Kim, I.Y. Park, Y.D. Choi, Effect of synthesis temperature on particle size/shape and photoluminescence characteristics of ZnS:Cu nanocrystals, Mater. Lett. 58, (2004), 342-346.

DOI: 10.1016/s0167-577x(03)00483-x

Google Scholar

[24] K. Jayanthi, S. Chawla, H. Chander, Luminescence properties of undoped and copper doped ZnS nanocrystalline thin film, NCLA Proceeding of National Conference on Luminescence and its Applications (NCLA), (2007), 215-217.

Google Scholar

[25] P. Vishwakarma, M. Ramrakhiani, P. Singh, D.P. Bisen, Synthesis and electroluminescence studies of manganese doped cadmium sulfide nanoparticles, The Open Nanoscience Journal, 5, (2011), 34-40.

DOI: 10.2174/1874140101105010034

Google Scholar

[26] R. Tekchandani, N. Gautam, M. Ramrakhiani, Preparation characterization and electroluminescence studies of cademium selenide nanocrystals, The Open Nanoscience Journal, 5, (2011), 59-63.

DOI: 10.2174/1874140101105010059

Google Scholar

[27] Meera Ramrakhiani and Vikas Nogriya, Synthesis and characterization of zinc sulphide nanocrystals and zinc sulphide/polyvinyl alcohol nanocomposites for luminescence applications, Chapter in Book "Polymer processing and Characterization" Advances in Materials Science Volume 1 Ed. Sabu Thomas, Deepaleskmi Ponnamma and Ajesh K. Zachariah; Apple Academic Press CRC Press Taylor & Francis Group (2012), 109-138.

DOI: 10.1201/b13105-15

Google Scholar