[1]
M.J. Madou and S.R. Morrison, Chemical Sensing with Solid State Devices, Academic Press, New York, 1989.
Google Scholar
[2]
W. Gopel and K.D. Schierbaum, Current status and future prospects, Sens. Actuators B Chem. 26- 27 (1995) 1-12.
Google Scholar
[3]
G. Eranna, B.C. Joshi, D.P. Runthala and R.P. Gupta, Oxide materials for development of integrated gas sensors-a comprehensive review, Sol. St. Mater. Sci. 29 (2004) 111-188.
DOI: 10.1080/10408430490888977
Google Scholar
[4]
G. Korotcenkov, Practical aspects in design of one-electrode semiconductor gas sensors, Sens. Actuators B Chem. 121 (2) (2007) 664-678.
DOI: 10.1016/j.snb.2006.04.092
Google Scholar
[5]
B. Hoffheins, "Solid State, Resistive Gas Sensors," in: R.F. Taylor and J.S. Schultz (Eds.), Handbook of Chemical and Biological Sensors, Philadelphia: Institute of Physics, 1996.
DOI: 10.1887/0750303239/b216c14
Google Scholar
[6]
S.A. Hooker, Nanotechnology Advantages Applied to Gas Sensor Development, The Nanoparticles 2002 Conference Proceedings, Business Communications Co., Inc., Norwalk, CT, USA.
Google Scholar
[7]
W. Gopel, J. Hesse and J.N. Zemel, Sensors: A Comprehensive Survey, Vol. 1-9, Wiley-VCH, Weinheim, 1989-1995.
Google Scholar
[8]
G. Sberveglieri, Gas Sensors: Principles, Operations and Developments, Kluwer Academic Publishers, Netherlands, 1992.
Google Scholar
[9]
N. Barsan, M. Schweizer-Belberich and W. Gopel, Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensor, J. Anal. Chem. 365 (1999) 287-304.
Google Scholar
[10]
K. Ihokura and J. Watson, Stannic Oxide Gas Sensor: Principle and Applications, CRC Press, Boca Raton, FL, 1994.
Google Scholar
[11]
K.D. Schierbaum and U. Weimar, Comparison of ceramics, thick-film and thin-film chemical sensors based upon SnO2, Sens. Actuators B Chem. 7 (1992) 709-716.
DOI: 10.1016/0925-4005(92)80390-j
Google Scholar
[12]
D. Kohl, Function and applications of gas sensors, J. Phys. D: Appl. Phys. 34 (2001) R125-R149.
DOI: 10.1088/0022-3727/34/19/201
Google Scholar
[13]
C. Xu, J. Tamaki, N. Miura and N. Yamazoe, Grain size effects on gas sensitivity of porous SnO2 based elements, Sens. Actuators B Chem. 3 (1991) 147-155.
DOI: 10.1016/0925-4005(91)80207-z
Google Scholar
[14]
V. Lantto and T.S. Rantala, Equilibrium and non equilibrium conductance response of sintered SnO2 samples to CO. Sens. Actuators B Chem. 5 (1991) 103-107.
DOI: 10.1016/0925-4005(91)80228-c
Google Scholar
[15]
D.E. Williams and K.F.E Pratt, Classification of reactive sites on the surface of polycrystalline tin dioxide, J. Chem. Soc. Faraday Trans. 94 (1998) 3493-3500.
DOI: 10.1039/a807644h
Google Scholar
[16]
M.I. Baraton and L. Merhari, Advances in air quality monitoring via nanotechnology, J. Nanoparticle Res. 6 (2004) 107-117.
DOI: 10.1023/b:nano.0000023239.56676.12
Google Scholar
[17]
N. Yamazoe, New approaches for improving semiconductor gas sensors, Sens. Actuators B Chem. 5 (1991) 7-19.
Google Scholar
[18]
S. Abe, U.-S. Choi, K. Shimanoe and N. Yamazoe, Influences of ball-milling time on gas- properties of Co3O4-SnO2 composites, Sens. Actuators B Chem. 107 (2005) 516-522.
DOI: 10.1016/j.snb.2004.11.010
Google Scholar
[19]
T. Hyoda, N. Nishida, Y. Shimizu and M. Egashira, Preparation and gas-sensing properties of thermally stable mesoporous SnO2, Sens. Actuators B Chem. 83 (2002) 201-215.
DOI: 10.1016/s0925-4005(01)01042-5
Google Scholar
[20]
Y. Shimizu, Y. Nakamura and M. Egashira, Effects of diffusivity of hydrogen and oxygen through pores of thick film SnO2-based sensors on their sensing properties, Sens. Actuators B Chem. 13-14 (1993) 128-131.
DOI: 10.1016/0925-4005(93)85342-8
Google Scholar
[21]
T. Hyoda, S. Abe, Y. Shimizu and M. Egashira, Gas-sensing properties of ordered mesoporous SnO2 and effects of coating there of, Sens. Actuators B Chem. 93 (2003) 590-600.
DOI: 10.1016/s0925-4005(03)00208-9
Google Scholar
[22]
A. Cabot, A. Dieguez, A. Romano-Rodriguez, J.R. Morante and N. Barsan, Influence of the catalytic introduction procedure on the nano SnO2 gas sensor performances: Where and how stay the catalytic atoms? Sens. Actuators B Chem. 79 (2001) 98-106.
DOI: 10.1016/s0925-4005(01)00854-1
Google Scholar
[23]
A. Cirera, A. Cornet, J.R. Morante, S.M. Olaizola, E. Castano and J.R. Gracia, Comparative structural study between sputtered and liquid pyrolysis nanocrystalline SnO2, Mater. Sci. Eng. B 69-70 (2000) 406-410.
DOI: 10.1016/s0921-5107(99)00311-6
Google Scholar
[24]
R. Rella, P. Siciliano, S. Capone, M. Epifani, L. Vasanelli and A. Licciulli, Air Quality Monitoring by Means of Sol-Gel Integrated Tin Oxide Thin Films, Sensors and Actuators B 58 (1999) 283- 288.
DOI: 10.1016/s0925-4005(99)00090-8
Google Scholar
[25]
M. Ferroni, D. Boscarino, E. Comini, D. Gnani, V. Guidi, G. Martinelli, P. Nelli, V. Rigato and G. Sberveglieri, Nanosized Thin Films of Tungsten-Titanium Mixed Oxides as Gas Sensors, Sensors and Actuators B 58 (1999) 289-294.
DOI: 10.1016/s0925-4005(99)00146-x
Google Scholar
[26]
Y.K. Chung, M.H. Kim, W.S. Um, H.S. Lee, J.K. Song, S.C. Choi, K.M. Yi, M.J. Lee and K.W. Chung, Gas Sensing Properties of WO3 Thick Film for NO2 Gas Dependent on Process Conditions, Sensors and Actuators B 60 (1999) 49-56.
DOI: 10.1016/s0925-4005(99)00243-9
Google Scholar
[27]
A. Chiorino, G. Ghiotti, F. Prinetto, M.C. Carotta, M. Gallana and G. Martinelli, Characterization of Materials for Gas Sensors: Surface Chemistry of SnO2 and MoOx-SnO2 Nano-Sized Powders and Electrical Responses of the Related Thick Films, Sensors and Actuators B 59 (1999) 203-209.
DOI: 10.1016/s0925-4005(99)00221-x
Google Scholar
[28]
N. Barsan and U. Weimar, Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity, J. Phys. Condens. Matter. 15 (2003) R813-R839.
DOI: 10.1088/0953-8984/15/20/201
Google Scholar
[29]
I. Lundstrom, Approaches and mechanisms to solid state based sensing, Sens. Actuators B Chem. 35-36 (1996) 11-19.
Google Scholar
[30]
N. Barsan and U. Weimar, Conduction model of metal oxide gas sensors, J. Electroceram. 7 (2001) 143-167.
Google Scholar
[31]
A. Rothschild and Y. Komem, The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors, J. Appl. Phys. 95 (2004) 6374-6380.
DOI: 10.1063/1.1728314
Google Scholar
[32]
K.D. Schierbaum, U. Weimar, W. Gopel and R. Kowalkowski, Conductance, work function and catalytic activity of SnO2-based gas sensors, Sens. Actuators B Chem. 3 (1991) 205-214.
DOI: 10.1016/0925-4005(91)80007-7
Google Scholar
[33]
H. Ogawa, M. Nishikawa and A. Abe, Hall measurements studies and an electrical conduction model of tin oxide ultrafine particle films, J. Appl. Phys. 53 (1982) 4448-4455.
DOI: 10.1063/1.331230
Google Scholar
[34]
A.C. Bose, P. Thangadurai and S. Ramasamy, Grain size dependent electrical studies on nanocrystalline SnO2, Mater. Chem. Phys. 95 (2006) 72-78.
DOI: 10.1016/j.matchemphys.2005.04.058
Google Scholar
[35]
B. Timmer, W. Olthuis and A. van den Berg, Ammonia sensors and their applications-a review, Sens. Actuators B Chem. 107 (2005) 666-677.
DOI: 10.1016/j.snb.2004.11.054
Google Scholar
[36]
G. Korotcenkov, Gas response control through structural and chemical modifications of metal oxide films: state of the art and approaches, Sens. Actuators B Chem. 107 (1) (2005) 209-232.
DOI: 10.1016/j.snb.2004.10.006
Google Scholar
[37]
Y. Shimizu and M. Egashira, Basic aspects and challenges of semiconductor gas sensors, MRS Bull. 24 (1999) 18-24.
DOI: 10.1557/s0883769400052465
Google Scholar
[38]
X. Wang, S.S. Yee and W.P. Carey, Transition between neck-controlled and grain-boundary- controlled sensitivity of metal-oxide gas sensors, Sens. Actuators B Chem. 25 (1995) 454-457.
DOI: 10.1016/0925-4005(94)01395-0
Google Scholar
[39]
S.G. Ansari, P. Boroojerdian, S.R. Sainkar, R.N. Karekar, R.C. Aiyer and S.K. Kulkarni, Grain size effects on H2 gas sensitivity of thick film resistor using SnO2 nanoparticles, Thin Solid Films 25 (1997) 271-276.
DOI: 10.1016/s0040-6090(96)09152-3
Google Scholar
[40]
B. Panchapakesan, D.L. De Voe, M.R. Widmaier, R. Cavicchi and S. Semancik, Nanoparticle engineering and control of tin oxide microstructure for chemical microsensor applications, Nanotechnology 12 (2001) 336-349.
DOI: 10.1088/0957-4484/12/3/323
Google Scholar
[41]
M.I. Baraton and L. Merhari, Influence of the particle size on the surface reactivity and gas sensing properties of SnO2 nanopowders, Mater. Trans. 42 (2001) 1616-1622.
DOI: 10.2320/matertrans.42.1616
Google Scholar
[42]
C.N.R. Rao, G.U. Kulkarni, P.J. Thomas and P.P. Edwards, Size-dependent chemistry: Properties of nanocrystals, Chem. Euro. J. 8 (2002) 28-35.
Google Scholar
[43]
C.H. Shek, J.K.L. Lai and G.M. Lin, Investigation of interface defects in nanocrystalline SnO2 by positron annihilation, J. Phys. Chem. Sol. 601 (1999) 189-193.
DOI: 10.1016/s0022-3697(98)00269-8
Google Scholar
[44]
C.V. Thompson, Structure evolution during processing of polycrystalline films, Ann. Rev. Mater. Sci. 30 (2000) 159-190.
DOI: 10.1146/annurev.matsci.30.1.159
Google Scholar
[45]
A.M. Mazzone, A quantum mechanical study of the stability of SnO2 nanocrystalline grains, J. Phys.: Cond. Matter 14 (2002) 12819-12824.
DOI: 10.1088/0953-8984/14/48/321
Google Scholar
[46]
N. Goldstein, C.M. Echer and A.P. Alivistos, Melting in semiconductor nanocrystals, Science 256 (1992) 1425-1427.
DOI: 10.1126/science.256.5062.1425
Google Scholar
[47]
H.K. Christenson, Confinement effects on freezing and melting, J. Phys. Cond. Matter 13 (2001) 95-133.
Google Scholar
[48]
Z. Zhang, Z.C. Li and Q. Jiang, Modelling for size-dependent and dimension-dependent melting of nanocrystals, J. Phys. D: Appl. Phys. 33 (2000) 2653-2656.
DOI: 10.1088/0022-3727/33/20/318
Google Scholar
[49]
S.R. Morrison, Semiconductor gas sensors, Sens. Actuators 2 (1982) 329-341.
Google Scholar
[50]
P.T. Moseley, Solid state gas sensors, Meas. Sci. Technol. 8 (1997) 223-237.
Google Scholar
[51]
J. Watson, K. Ihokura, G.S.V. Coles, The tin dioxide gas sensor, Meas. Sci. Technol. 4 (1993) 711-719.
DOI: 10.1088/0957-0233/4/7/001
Google Scholar
[52]
G. Zhang, M. Liu, Effect of particle size and dopant on properties of SnO2- based gas sensors, Sens. Actuators B 69 (2000) 144-152.
DOI: 10.1016/s0925-4005(00)00528-1
Google Scholar
[53]
M.K. Kennedy, F.E. Kruis, H. Fissan, B.R. Mehta, S. Stappert, G. Dumpich, Tailored nanoparticle films from monosized tin oxide nanocrystals: Particle synthesis, film formation, and size-dependent gas-sensing properties, J. Appl. Phys. 93 (1) (2003) 551-560.
DOI: 10.1063/1.1525855
Google Scholar
[54]
Z. Ying, Q. Wan, Z.T. Song, S.L. Feng, SnO2 nanowhiskers and their ethanol sensing characteristics, Nanotechnology 15 (2004) 1682-1684.
DOI: 10.1088/0957-4484/15/11/053
Google Scholar
[55]
Y.J. Choi, I.S. Hwang, J.G. Park, K.J. Choi, J.H. Park, J.H. Lee, Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity, Nanotechnology 19 (2008) 095508.
DOI: 10.1088/0957-4484/19/9/095508
Google Scholar
[56]
E.T.H. Tan, G.W. Ho, A.S.W Wong, S. Kawi, A.T.S. Wee, Gas sensing properties of tin oxide nanostructures synthesized via a solid-state reaction method, Nanotechnology 19 (2008) 255706.
DOI: 10.1088/0957-4484/19/25/255706
Google Scholar
[57]
J. Kaur, R. Kumar, M.C. Bhatnagar, Effect of indium-doped SnO2 nanoparticles on NO2 gas sensing properties, Sens. Actuators B 126 (2007) 478-484.
DOI: 10.1016/j.snb.2007.03.033
Google Scholar
[58]
S. Chacko, M.J. Bushiri, V.K. Vaidyan, Photoluminescence studies of spray pyrolytically grown nanostructured tin oxide semiconductor thin films on glass substrates, J. Phys. D: Appl. Phys. 39 (2006) 4540-4543.
DOI: 10.1088/0022-3727/39/21/004
Google Scholar
[59]
S.K. Kang, Y.K. Yang, J. Mu, Solvothermal synthesis of SnO2 nanoparticles via oxidation of Sn2+ ions at water-oil interface, Colloids Surf. A 298 (2007) 280-283.
DOI: 10.1016/j.colsurfa.2006.11.008
Google Scholar
[60]
P.S. Cho, K.W. Kim, J.H. Lee, Improvement of dynamic gas sensing behaviour of SnO2 acicular particles by microwave calcinations, Sens. Actuators B 123 (2007) 1034-1039.
DOI: 10.1016/j.snb.2006.11.007
Google Scholar
[61]
G. Gaggiotti, A. Galdikas, S. Kaciulis, G. Mattogno, A. Setkus, Surface chemistry of tin oxide based gas sensors, J. Appl. Phys. 76 (8) (1994) 4467-4471.
DOI: 10.1063/1.357277
Google Scholar
[62]
T. Oyabu, T. Osawa, T. Kurobe, Sensing characteristics of tin oxide thick film gas sensor, J. Appl. Phys. 53 (11) (1982) 7125-7130.
DOI: 10.1063/1.331605
Google Scholar
[63]
B.K. Miremadi, R.C. Singh, S.R. Morrison, K. Colbow, A highly sensitive and selective hydrogen gas sensor from thick oriented films of MoS2, Appl. Phys. A 63 (1996) 271-275.
DOI: 10.1007/bf01567880
Google Scholar
[64]
R.C. Singh, O. Singh, M.P. Singh, P.S. Chandi, Synthesis of zinc oxide nanorods and nanoparticles by chemical route and their comparative study as ethanol sensors, Sens. Actuators B 135 (2008) 352-357.
DOI: 10.1016/j.snb.2008.09.004
Google Scholar
[65]
K. Arshak, I. Gaidan, Development of a novel gas sensor based on oxide thick films, Mater. Sci. Eng. B 118 (2005) 44-49.
DOI: 10.1016/j.mseb.2004.12.061
Google Scholar
[66]
G. Cao, Nanostructures and Nanomaterials: Synthesis, Properties & Applications, 1st ed., Imperial College Press, London, 2004, p.76 & 86.
Google Scholar