Applications of Nanostructured Materials as Gas Sensors

Article Preview

Abstract:

Gas detection instruments are increasingly needed for industrial health and safety, environmental monitoring, and process control. To meet this demand, considerable research into new sensors is underway, including efforts to enhance the performance of traditional devices, such as resistive metal oxide sensors, through nanoengineering. The resistance of semiconductors is affected by the gaseous ambient. The semiconducting metal oxides based gas sensors exploit this phenomenon. Physical chemistry of solid metal surfaces plays a dominant role in controlling the gas sensing characteristics. Metal oxide sensors have been utilized for several decades for low-cost detection of combustible and toxic gases. Recent advances in nanomaterials provide the opportunity to dramatically increase the response of these materials, as their performance is directly related to exposed surface volume. Proper control of grain size remains a key challenge for high sensor performance. Nanoparticles of SnO2 have been synthesized through chemical route at 5, 25 and 50°C. The synthesized particles were sintered at 400, 600 and 800°C and their structural and morphological analysis was carried out using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The reaction temperature is found to be playing a critical role in controlling nanostructure sizes as well as agglomeration. It has been observed that particle synthesized at 5 and 50°C are smaller and less agglomerated as compared to the particles prepared at 25°C. The studies revealed that particle size and agglomeration increases with increase in sintering temperature. Thick films gas sensors were fabricated using synthesized tin dioxide powder and sensing response of all the sensors to ethanol vapors was investigated at different temperatures and concentrations. The investigations revealed that sensing response of SnO2 nanoparticles is size dependent and smaller particles display higher sensitivity. Table of Contents

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 201)

Pages:

131-158

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.J. Madou and S.R. Morrison, Chemical Sensing with Solid State Devices, Academic Press, New York, 1989.

Google Scholar

[2] W. Gopel and K.D. Schierbaum, Current status and future prospects, Sens. Actuators B Chem. 26- 27 (1995) 1-12.

Google Scholar

[3] G. Eranna, B.C. Joshi, D.P. Runthala and R.P. Gupta, Oxide materials for development of integrated gas sensors-a comprehensive review, Sol. St. Mater. Sci. 29 (2004) 111-188.

DOI: 10.1080/10408430490888977

Google Scholar

[4] G. Korotcenkov, Practical aspects in design of one-electrode semiconductor gas sensors, Sens. Actuators B Chem. 121 (2) (2007) 664-678.

DOI: 10.1016/j.snb.2006.04.092

Google Scholar

[5] B. Hoffheins, "Solid State, Resistive Gas Sensors," in: R.F. Taylor and J.S. Schultz (Eds.), Handbook of Chemical and Biological Sensors, Philadelphia: Institute of Physics, 1996.

DOI: 10.1887/0750303239/b216c14

Google Scholar

[6] S.A. Hooker, Nanotechnology Advantages Applied to Gas Sensor Development, The Nanoparticles 2002 Conference Proceedings, Business Communications Co., Inc., Norwalk, CT, USA.

Google Scholar

[7] W. Gopel, J. Hesse and J.N. Zemel, Sensors: A Comprehensive Survey, Vol. 1-9, Wiley-VCH, Weinheim, 1989-1995.

Google Scholar

[8] G. Sberveglieri, Gas Sensors: Principles, Operations and Developments, Kluwer Academic Publishers, Netherlands, 1992.

Google Scholar

[9] N. Barsan, M. Schweizer-Belberich and W. Gopel, Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensor, J. Anal. Chem. 365 (1999) 287-304.

Google Scholar

[10] K. Ihokura and J. Watson, Stannic Oxide Gas Sensor: Principle and Applications, CRC Press, Boca Raton, FL, 1994.

Google Scholar

[11] K.D. Schierbaum and U. Weimar, Comparison of ceramics, thick-film and thin-film chemical sensors based upon SnO2, Sens. Actuators B Chem. 7 (1992) 709-716.

DOI: 10.1016/0925-4005(92)80390-j

Google Scholar

[12] D. Kohl, Function and applications of gas sensors, J. Phys. D: Appl. Phys. 34 (2001) R125-R149.

DOI: 10.1088/0022-3727/34/19/201

Google Scholar

[13] C. Xu, J. Tamaki, N. Miura and N. Yamazoe, Grain size effects on gas sensitivity of porous SnO2 based elements, Sens. Actuators B Chem. 3 (1991) 147-155.

DOI: 10.1016/0925-4005(91)80207-z

Google Scholar

[14] V. Lantto and T.S. Rantala, Equilibrium and non equilibrium conductance response of sintered SnO2 samples to CO. Sens. Actuators B Chem. 5 (1991) 103-107.

DOI: 10.1016/0925-4005(91)80228-c

Google Scholar

[15] D.E. Williams and K.F.E Pratt, Classification of reactive sites on the surface of polycrystalline tin dioxide, J. Chem. Soc. Faraday Trans. 94 (1998) 3493-3500.

DOI: 10.1039/a807644h

Google Scholar

[16] M.I. Baraton and L. Merhari, Advances in air quality monitoring via nanotechnology, J. Nanoparticle Res. 6 (2004) 107-117.

DOI: 10.1023/b:nano.0000023239.56676.12

Google Scholar

[17] N. Yamazoe, New approaches for improving semiconductor gas sensors, Sens. Actuators B Chem. 5 (1991) 7-19.

Google Scholar

[18] S. Abe, U.-S. Choi, K. Shimanoe and N. Yamazoe, Influences of ball-milling time on gas- properties of Co3O4-SnO2 composites, Sens. Actuators B Chem. 107 (2005) 516-522.

DOI: 10.1016/j.snb.2004.11.010

Google Scholar

[19] T. Hyoda, N. Nishida, Y. Shimizu and M. Egashira, Preparation and gas-sensing properties of thermally stable mesoporous SnO2, Sens. Actuators B Chem. 83 (2002) 201-215.

DOI: 10.1016/s0925-4005(01)01042-5

Google Scholar

[20] Y. Shimizu, Y. Nakamura and M. Egashira, Effects of diffusivity of hydrogen and oxygen through pores of thick film SnO2-based sensors on their sensing properties, Sens. Actuators B Chem. 13-14 (1993) 128-131.

DOI: 10.1016/0925-4005(93)85342-8

Google Scholar

[21] T. Hyoda, S. Abe, Y. Shimizu and M. Egashira, Gas-sensing properties of ordered mesoporous SnO2 and effects of coating there of, Sens. Actuators B Chem. 93 (2003) 590-600.

DOI: 10.1016/s0925-4005(03)00208-9

Google Scholar

[22] A. Cabot, A. Dieguez, A. Romano-Rodriguez, J.R. Morante and N. Barsan, Influence of the catalytic introduction procedure on the nano SnO2 gas sensor performances: Where and how stay the catalytic atoms? Sens. Actuators B Chem. 79 (2001) 98-106.

DOI: 10.1016/s0925-4005(01)00854-1

Google Scholar

[23] A. Cirera, A. Cornet, J.R. Morante, S.M. Olaizola, E. Castano and J.R. Gracia, Comparative structural study between sputtered and liquid pyrolysis nanocrystalline SnO2, Mater. Sci. Eng. B 69-70 (2000) 406-410.

DOI: 10.1016/s0921-5107(99)00311-6

Google Scholar

[24] R. Rella, P. Siciliano, S. Capone, M. Epifani, L. Vasanelli and A. Licciulli, Air Quality Monitoring by Means of Sol-Gel Integrated Tin Oxide Thin Films, Sensors and Actuators B 58 (1999) 283- 288.

DOI: 10.1016/s0925-4005(99)00090-8

Google Scholar

[25] M. Ferroni, D. Boscarino, E. Comini, D. Gnani, V. Guidi, G. Martinelli, P. Nelli, V. Rigato and G. Sberveglieri, Nanosized Thin Films of Tungsten-Titanium Mixed Oxides as Gas Sensors, Sensors and Actuators B 58 (1999) 289-294.

DOI: 10.1016/s0925-4005(99)00146-x

Google Scholar

[26] Y.K. Chung, M.H. Kim, W.S. Um, H.S. Lee, J.K. Song, S.C. Choi, K.M. Yi, M.J. Lee and K.W. Chung, Gas Sensing Properties of WO3 Thick Film for NO2 Gas Dependent on Process Conditions, Sensors and Actuators B 60 (1999) 49-56.

DOI: 10.1016/s0925-4005(99)00243-9

Google Scholar

[27] A. Chiorino, G. Ghiotti, F. Prinetto, M.C. Carotta, M. Gallana and G. Martinelli, Characterization of Materials for Gas Sensors: Surface Chemistry of SnO2 and MoOx-SnO2 Nano-Sized Powders and Electrical Responses of the Related Thick Films, Sensors and Actuators B 59 (1999) 203-209.

DOI: 10.1016/s0925-4005(99)00221-x

Google Scholar

[28] N. Barsan and U. Weimar, Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity, J. Phys. Condens. Matter. 15 (2003) R813-R839.

DOI: 10.1088/0953-8984/15/20/201

Google Scholar

[29] I. Lundstrom, Approaches and mechanisms to solid state based sensing, Sens. Actuators B Chem. 35-36 (1996) 11-19.

Google Scholar

[30] N. Barsan and U. Weimar, Conduction model of metal oxide gas sensors, J. Electroceram. 7 (2001) 143-167.

Google Scholar

[31] A. Rothschild and Y. Komem, The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors, J. Appl. Phys. 95 (2004) 6374-6380.

DOI: 10.1063/1.1728314

Google Scholar

[32] K.D. Schierbaum, U. Weimar, W. Gopel and R. Kowalkowski, Conductance, work function and catalytic activity of SnO2-based gas sensors, Sens. Actuators B Chem. 3 (1991) 205-214.

DOI: 10.1016/0925-4005(91)80007-7

Google Scholar

[33] H. Ogawa, M. Nishikawa and A. Abe, Hall measurements studies and an electrical conduction model of tin oxide ultrafine particle films, J. Appl. Phys. 53 (1982) 4448-4455.

DOI: 10.1063/1.331230

Google Scholar

[34] A.C. Bose, P. Thangadurai and S. Ramasamy, Grain size dependent electrical studies on nanocrystalline SnO2, Mater. Chem. Phys. 95 (2006) 72-78.

DOI: 10.1016/j.matchemphys.2005.04.058

Google Scholar

[35] B. Timmer, W. Olthuis and A. van den Berg, Ammonia sensors and their applications-a review, Sens. Actuators B Chem. 107 (2005) 666-677.

DOI: 10.1016/j.snb.2004.11.054

Google Scholar

[36] G. Korotcenkov, Gas response control through structural and chemical modifications of metal oxide films: state of the art and approaches, Sens. Actuators B Chem. 107 (1) (2005) 209-232.

DOI: 10.1016/j.snb.2004.10.006

Google Scholar

[37] Y. Shimizu and M. Egashira, Basic aspects and challenges of semiconductor gas sensors, MRS Bull. 24 (1999) 18-24.

DOI: 10.1557/s0883769400052465

Google Scholar

[38] X. Wang, S.S. Yee and W.P. Carey, Transition between neck-controlled and grain-boundary- controlled sensitivity of metal-oxide gas sensors, Sens. Actuators B Chem. 25 (1995) 454-457.

DOI: 10.1016/0925-4005(94)01395-0

Google Scholar

[39] S.G. Ansari, P. Boroojerdian, S.R. Sainkar, R.N. Karekar, R.C. Aiyer and S.K. Kulkarni, Grain size effects on H2 gas sensitivity of thick film resistor using SnO2 nanoparticles, Thin Solid Films 25 (1997) 271-276.

DOI: 10.1016/s0040-6090(96)09152-3

Google Scholar

[40] B. Panchapakesan, D.L. De Voe, M.R. Widmaier, R. Cavicchi and S. Semancik, Nanoparticle engineering and control of tin oxide microstructure for chemical microsensor applications, Nanotechnology 12 (2001) 336-349.

DOI: 10.1088/0957-4484/12/3/323

Google Scholar

[41] M.I. Baraton and L. Merhari, Influence of the particle size on the surface reactivity and gas sensing properties of SnO2 nanopowders, Mater. Trans. 42 (2001) 1616-1622.

DOI: 10.2320/matertrans.42.1616

Google Scholar

[42] C.N.R. Rao, G.U. Kulkarni, P.J. Thomas and P.P. Edwards, Size-dependent chemistry: Properties of nanocrystals, Chem. Euro. J. 8 (2002) 28-35.

Google Scholar

[43] C.H. Shek, J.K.L. Lai and G.M. Lin, Investigation of interface defects in nanocrystalline SnO2 by positron annihilation, J. Phys. Chem. Sol. 601 (1999) 189-193.

DOI: 10.1016/s0022-3697(98)00269-8

Google Scholar

[44] C.V. Thompson, Structure evolution during processing of polycrystalline films, Ann. Rev. Mater. Sci. 30 (2000) 159-190.

DOI: 10.1146/annurev.matsci.30.1.159

Google Scholar

[45] A.M. Mazzone, A quantum mechanical study of the stability of SnO2 nanocrystalline grains, J. Phys.: Cond. Matter 14 (2002) 12819-12824.

DOI: 10.1088/0953-8984/14/48/321

Google Scholar

[46] N. Goldstein, C.M. Echer and A.P. Alivistos, Melting in semiconductor nanocrystals, Science 256 (1992) 1425-1427.

DOI: 10.1126/science.256.5062.1425

Google Scholar

[47] H.K. Christenson, Confinement effects on freezing and melting, J. Phys. Cond. Matter 13 (2001) 95-133.

Google Scholar

[48] Z. Zhang, Z.C. Li and Q. Jiang, Modelling for size-dependent and dimension-dependent melting of nanocrystals, J. Phys. D: Appl. Phys. 33 (2000) 2653-2656.

DOI: 10.1088/0022-3727/33/20/318

Google Scholar

[49] S.R. Morrison, Semiconductor gas sensors, Sens. Actuators 2 (1982) 329-341.

Google Scholar

[50] P.T. Moseley, Solid state gas sensors, Meas. Sci. Technol. 8 (1997) 223-237.

Google Scholar

[51] J. Watson, K. Ihokura, G.S.V. Coles, The tin dioxide gas sensor, Meas. Sci. Technol. 4 (1993) 711-719.

DOI: 10.1088/0957-0233/4/7/001

Google Scholar

[52] G. Zhang, M. Liu, Effect of particle size and dopant on properties of SnO2- based gas sensors, Sens. Actuators B 69 (2000) 144-152.

DOI: 10.1016/s0925-4005(00)00528-1

Google Scholar

[53] M.K. Kennedy, F.E. Kruis, H. Fissan, B.R. Mehta, S. Stappert, G. Dumpich, Tailored nanoparticle films from monosized tin oxide nanocrystals: Particle synthesis, film formation, and size-dependent gas-sensing properties, J. Appl. Phys. 93 (1) (2003) 551-560.

DOI: 10.1063/1.1525855

Google Scholar

[54] Z. Ying, Q. Wan, Z.T. Song, S.L. Feng, SnO2 nanowhiskers and their ethanol sensing characteristics, Nanotechnology 15 (2004) 1682-1684.

DOI: 10.1088/0957-4484/15/11/053

Google Scholar

[55] Y.J. Choi, I.S. Hwang, J.G. Park, K.J. Choi, J.H. Park, J.H. Lee, Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity, Nanotechnology 19 (2008) 095508.

DOI: 10.1088/0957-4484/19/9/095508

Google Scholar

[56] E.T.H. Tan, G.W. Ho, A.S.W Wong, S. Kawi, A.T.S. Wee, Gas sensing properties of tin oxide nanostructures synthesized via a solid-state reaction method, Nanotechnology 19 (2008) 255706.

DOI: 10.1088/0957-4484/19/25/255706

Google Scholar

[57] J. Kaur, R. Kumar, M.C. Bhatnagar, Effect of indium-doped SnO2 nanoparticles on NO2 gas sensing properties, Sens. Actuators B 126 (2007) 478-484.

DOI: 10.1016/j.snb.2007.03.033

Google Scholar

[58] S. Chacko, M.J. Bushiri, V.K. Vaidyan, Photoluminescence studies of spray pyrolytically grown nanostructured tin oxide semiconductor thin films on glass substrates, J. Phys. D: Appl. Phys. 39 (2006) 4540-4543.

DOI: 10.1088/0022-3727/39/21/004

Google Scholar

[59] S.K. Kang, Y.K. Yang, J. Mu, Solvothermal synthesis of SnO2 nanoparticles via oxidation of Sn2+ ions at water-oil interface, Colloids Surf. A 298 (2007) 280-283.

DOI: 10.1016/j.colsurfa.2006.11.008

Google Scholar

[60] P.S. Cho, K.W. Kim, J.H. Lee, Improvement of dynamic gas sensing behaviour of SnO2 acicular particles by microwave calcinations, Sens. Actuators B 123 (2007) 1034-1039.

DOI: 10.1016/j.snb.2006.11.007

Google Scholar

[61] G. Gaggiotti, A. Galdikas, S. Kaciulis, G. Mattogno, A. Setkus, Surface chemistry of tin oxide based gas sensors, J. Appl. Phys. 76 (8) (1994) 4467-4471.

DOI: 10.1063/1.357277

Google Scholar

[62] T. Oyabu, T. Osawa, T. Kurobe, Sensing characteristics of tin oxide thick film gas sensor, J. Appl. Phys. 53 (11) (1982) 7125-7130.

DOI: 10.1063/1.331605

Google Scholar

[63] B.K. Miremadi, R.C. Singh, S.R. Morrison, K. Colbow, A highly sensitive and selective hydrogen gas sensor from thick oriented films of MoS2, Appl. Phys. A 63 (1996) 271-275.

DOI: 10.1007/bf01567880

Google Scholar

[64] R.C. Singh, O. Singh, M.P. Singh, P.S. Chandi, Synthesis of zinc oxide nanorods and nanoparticles by chemical route and their comparative study as ethanol sensors, Sens. Actuators B 135 (2008) 352-357.

DOI: 10.1016/j.snb.2008.09.004

Google Scholar

[65] K. Arshak, I. Gaidan, Development of a novel gas sensor based on oxide thick films, Mater. Sci. Eng. B 118 (2005) 44-49.

DOI: 10.1016/j.mseb.2004.12.061

Google Scholar

[66] G. Cao, Nanostructures and Nanomaterials: Synthesis, Properties & Applications, 1st ed., Imperial College Press, London, 2004, p.76 & 86.

Google Scholar