Antibacterial Effects of Ag, Au and Bimetallic (Ag-Au) Nanoparticles Synthesized from Red Algae

Article Preview

Abstract:

Recently the utilization of prokaryotic cells (such as bacteria, algae) and plants have emerged as novel methods for the synthesis of nanoparticles intracellularly. Therefore the applications on living organisms have recently attracted the attention of biologists towards nanobiotechnology. In the present study, Silver, Gold and bimetallic alloy Ag-Au nanoparticles were synthesized from marine red alga, Gracilaria sp., of Gulf of Mannar with different molar concentrations of 100%Ag, 100% Au and Ag:Au (1:1, 1:3 and 3:1). The reduction of Ag, Au and Ag:Au NPs was confirmed by change of colour (i.e. from transparent to dark brown for silver NPs, to ruby red for gold NPs and pale pink for bimetallic NPs) as well as by peak absorption spectra. The absorption peak of the Gracilaria sp., for 100% Ag occurred at 419nm, for 100% Au at 536nm, for Ag: Au (1:1) concentrations at 504 nm for Ag: Au (1:3) at 526 nm and for Ag: Au (3:1) at 501nm. The size of Ag, Au and bimetallic Ag-Au NPs was measured by SEM analysis, proved that the synthesized nanoparticles were colloidal in nature. The bimetallic nanoparticles exhibited good antibacterial activity against Gram positive bacteria Staphylococcus aureus and Gram negative bacteria Klebsiella pneumoniae. The above results revealed that Salmonella typhii and Escherichia coli have no activity. However, bimetallic NPs of 1:3 concentration showed zones of inhibition against the pathogenic bacteria such as Staphylococcus aureus and Klebsiella pneumoniae rather than Ag NPs and Au NPs. This process of the nanoparticles production is eco-friendly as it is free from any solvent or toxic chemicals, and is also easily amenable for large-scale production.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 201)

Pages:

211-230

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Wang, N. Mamedova, N.A. Kotov, W. Chen, J. Studer, Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates, Nano. Lett. 2 (2002) 817-822.

DOI: 10.1021/nl0255193

Google Scholar

[2] S.R. Nicewarner-Pena, R.G. Freeman, B.D. Reiss, L. He, D.J. Pena, I.D. Walton, R. Cromer, C.D. Keating, M.J. Natan, Submicrometer metallic barcodes, Sci. 294 (2001) 137-141.

DOI: 10.1126/science.294.5540.137

Google Scholar

[3] M, Han, X. Gao, J.Z. Su, S. Nie, Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules, Nat. Biotechnol. 19 (2001) 631-635.

DOI: 10.1038/90228

Google Scholar

[4] H.M. Joshi, D.R. Bhumkar, J. Kalpana, P. Varsha, S. Murali, Gold nanoparticles as carriers for efficient transmucosal insulin delivery, Langmuir, 22 (2006) 300-305.

DOI: 10.1021/la051982u

Google Scholar

[5] S.S. Shiv, A. Ahmad, R. Pasricha, K. Islam, R. Kumar, M. Sastry, Immobilization of biogenic gold nanoparticles in thermally evaporated fatty acid and amine thin films, J. Colloid. Interface Sci. 274 (2004) 69-75.

DOI: 10.1016/j.jcis.2003.12.011

Google Scholar

[6] T.A. Taton, C.A. Mirkin, R.L. Letsinger, Scanometric DNA array detection with nanoparticle probes, Sci. 289 (2000) 1757-1760.

DOI: 10.1126/science.289.5485.1757

Google Scholar

[7] Y.C. Cao, R. Jin, C.A. Mirkin, Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection, Sci. 297 (2002) 1536-1540.

DOI: 10.1126/science.297.5586.1536

Google Scholar

[8] K.K. Sandhu, C.M. McIntosh, J. M. Simard, S.W. Smith, V.M. Rotello, Gold nanoparticle mediated transfection of mammalian cells, Bioconjugate. Chem. B, 13 (2002) 3-6.

DOI: 10.1021/bc015545c

Google Scholar

[9] D.D. Evanoff, G. Chumanov, Synthesis and optical properties of silver nanoparticles and arrays, Chem. Phys. Chem. 6 (2005) 1221-1231.

DOI: 10.1002/cphc.200500113

Google Scholar

[10] M.C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev. 104 (2004) 293–346.

DOI: 10.1021/cr030698+

Google Scholar

[11] C.J. Murphy, A.M. Gole, S.E. Hunyadi, J.W. Stone, P.N. Sisco, A. Alkilany et al., Gold nanoparticles in biology: Beyond toxicity to cellular imaging, Acc. Chem. Res. (2008)

DOI: 10.1021/ar800035u

Google Scholar

[12] A.R. Tao, S. Habas, P.D. Yang, Shape Control of Colloidal Metal Nanocrystals, Small, 4 (2008) 310–325.

DOI: 10.1002/smll.200701295

Google Scholar

[13] H.J. Jeon, S.C. Yi, S.G. Oh, Preparation and antibacterial effects of Ag-SiO2 thin films by sol-gel method, Biomaterials, 24 (2003) 4921–4928.

DOI: 10.1016/s0142-9612(03)00415-0

Google Scholar

[14] J.S. Kim, E. Kuk, K.N. Yu., et al., Antimicrobial effects of silver nanoparticles, Nanomed. 3 (2007) 95–101.

Google Scholar

[15] M.J. Eckelman, T.E. Graedel, Silver emissions and their environmental impacts: a multilevel assessment. Environ. Sci. Technol. 41 (2007) 6283–6289.

DOI: 10.1021/es062970d

Google Scholar

[16] C.W. Corti, R.J. Holliday, D.T. Thompson, Developing new industrial applications for gold: Gold nanotechnology, Gold Bull. 35 (2002) 111-117.

DOI: 10.1007/bf03214852

Google Scholar

[17] M.B. Cortie, The weird world of nano scale gold, Gold Bull. 37 (2004) 12-19.

Google Scholar

[18] C.W. Corti, R.J. Holliday, Commercial aspects of gold applications: From materials science to chemical science, Gold Bull. 37 (2004) 20-26.

DOI: 10.1007/bf03215513

Google Scholar

[19] H. Huang, X. Yang, One-step, shape control synthesis of gold nanoparticles stabilized by 3-thiopheneacetic acid, Colloids and Surfaces A: Physicochem. Eng. Aspects, 255 (2005) 11-17.

DOI: 10.1016/j.colsurfa.2004.12.020

Google Scholar

[20] C. Burda, X. Chen, R. Narayanan, M. A. El-Sayed, Chemistry and properties of nanocrystals of different shapes, Chem. Rev. 105 (2005) 1025-1102.

DOI: 10.1021/cr030063a

Google Scholar

[21] E. Katz, I. Willner, Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications, Angew, Chem. Int. Ed. 43 (2004) 6042-6108.

DOI: 10.1002/anie.200400651

Google Scholar

[22] N.L. Rosi, C.A. Mirkin, "Nanostructures in biodiagnostics, Chem. Rev. 105 (2005) 1547–1562.

DOI: 10.1021/cr030067f

Google Scholar

[23] J. Chen, B.J. Wiley, Z.Y. Li, D. Campbell, F. Saeki, H. Cang, A. Leslie, J. Lee, X. Li, Y. Xia, Gold Nanocages: Engineering Their Structure for Biomedical Applications, Adv Mater, 17 (2005) 2255-2261.

DOI: 10.1002/adma.200500833

Google Scholar

[24] S.S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad, M. Sastry, Biological synthesis of triangular gold nanoprisms, Nat. Mater, 3 (2004) 482-488.

DOI: 10.1038/nmat1152

Google Scholar

[25] K. Govindaraju, S.K. Basha, V.G. Kumar, G. Singaravelu, Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis), J. Mater. Sci. 43 (2008) 5115–5122.

DOI: 10.1007/s10853-008-2745-4

Google Scholar

[26] P.R. Selvakannan, S. Mandal, S. Phadtare, Renu Pasricha, M. Sastry, Capping of gold nanoparticles by the amino acid lysine renders them water-dispersible, Langmuir, 19 (2003) 3545-3549.

DOI: 10.1021/la026906v

Google Scholar

[27] B. Nair, T. Pradeep, Coalescence of Nanoclusters and Formation of Submicron Crystallites Assisted by Lactobacillus Strains, Crys Growth Des, 2 (2002) 293-298.

DOI: 10.1021/cg0255164

Google Scholar

[28] S. Senapati, A. Ahmad, M.I. Khan, M. Sastry, R. Kumar, Extracellular Biosynthesis of Bimetallic Au–Ag Alloy Nanoparticles, Small, 1 (2005) 517-520.

DOI: 10.1002/smll.200400053

Google Scholar

[29] G. Singaravelu, J.S. Arockiamary, V. Ganesh Kumar, K. Govindaraju, A novel extracellular biosynthesis of monodisperse gold nanoparticles using marine algae, Sargassum wightii Greville, Colloids and Surfaces B: Biointerfaces 57 (2007) 97–101.

DOI: 10.1016/j.colsurfb.2007.01.010

Google Scholar

[30] C.M. Ramakritinan, Sugandha Shankar, M. Anand, A.K. Kumaraguru, Biosynthesis of silver, gold and bimetallic alloy (Ag:Au) Nanoparticles from green alga, Lyngpya sp. Proc. 3rd Nat. Conf. on Nanaomaterials and Nanotechnology, Amity University, Lucknow 21st -23rd December 2010, Int. J. Mindshare, 1(1): 174-187.

Google Scholar

[31] S. Mandal, S. Phadtare, M. Sastry, Interfacing biology with nanoparticles, Curr. Appl. Phy. 5 (2005):118-127.

Google Scholar

[32] M. Brust, C.J. Kiely, Some recent advances in nanostructure preparation from gold and silver particles: a short topical review, Colloids and Surfaces A: Physicochem. Eng. Aspects, 202 (2002) 175-186.

DOI: 10.1016/s0927-7757(01)01087-1

Google Scholar

[33] M. Kowshik, S. Ashtaputre, S. Kharrazi, W. Vogel, J. Urban, S.K. Kulkarni, K.M. Paknikar, Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3, Nanotech. 14 (2003) 95-100.

DOI: 10.1088/0957-4484/14/1/321

Google Scholar

[34] P.V. Dunlap, K. Kita-Tsukamoto, J.B. Waterbury, S.M. Callahan, Isolation and characterization of a visibly luminous variant of Vibrio fischeri strain ES114 from the sepiolid squid Euprymna scolopes, Arch. Microbiol. 164 (1995) 194–202.

DOI: 10.1007/bf02529971

Google Scholar

[35] S. Shrivastava, T. Bera, A. Roy, G. Singh, P. Ramachandrarao, D. Dash, Characterization of enhanced antibacterial effects of novel silver nanoparticles, Nanotech. 18 (2007) 1-9.

DOI: 10.1088/0957-4484/18/22/225103

Google Scholar

[36] S. Kanchana Devi, Biosysnthesis of silver nanoparticles from seaweeds of Gulf of Mannar, M.Phil., Dissertation submitted to Madurai Kamaraj University, Madurai, India, 2009, pp:32.

Google Scholar

[37] K. Nealson, J.W. Hastings, The luminous bacteria, in: A. Balows, H. G. Truper, M. Dworkin, W. Harder, K.H. Schleifer (Eds.). The prokaryotes: A handbook for the biology of bacteria. Ecophysiology, isolation, identification, applications, 2nd ed, Vol.1. Springer-Verlag, Berlin, Germany, 1992, p.625–639.

DOI: 10.2307/1312033

Google Scholar

[38] K.Y. Yoon, J. Hoon Byeon, J.H. Park, J. Hwang, Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles, Sci. Total Environ. 373 (2007) 572-575

DOI: 10.1016/j.scitotenv.2006.11.007

Google Scholar

[39] N.J. Helmstetter, Antimicrobial Effects of Silver and Gold Nanoparticles Alone, and Functionalized with Ampicillin. Kalamazoo College, Department of Biological Sciences, Western Michigan University, M.Sc. Thesis, 2010, pp.1-24.

Google Scholar

[40] A.W. Bauer, W.M.M. Kirby, J.C. Sherris, M. Turck, Antibiotic susceptibility testing by a standardized single disk method, Am. J. Clin. Pathol. 45 (1966) 493–496.

DOI: 10.1093/ajcp/45.4_ts.493

Google Scholar

[41] S. Underwood, P. Mulvaney, Effect of the Solution Refractive Index on the Color of Gold Colloids, Langmuir, 10 (1994) 3427.

DOI: 10.1021/la00022a011

Google Scholar

[42] P. Mulvaney, Surface Plasmon Spectroscopy of Nanosized Metal Particles, Langmuir, 12 (1996) 788-200.

DOI: 10.1021/la9502711

Google Scholar

[43] M.D. Musick, C.D. Keating, L.A. Lyon, S.L. Botsko, D.J. Pena, W.D. Holliway, T.M. MeEvoy, J.N. Richardson, M.J. Natan, Metal films prepared by stepwise assembly. 2. construction and characterization of colloidal Au and Ag multilayers, Chem. Mater. 12 (2000) 2869-2881.

DOI: 10.1021/cm990714c

Google Scholar

[44] H. Kong, J. Jang, One-step fabrication of silver nanoparticle embedded polymer nanofibers by radical-mediated dispersion polymerization, Chem. Commun. 30 (2006) 3010-3012.

DOI: 10.1039/b605286j

Google Scholar

[45] M.P. Kasture, P. Patel, A.A. Prabhune, C.V. Ramana, A.A. Kulkarni, B.L.V. Prasad, Synthesis of silver nanoparticles by sophorolipids: Effect of temperature and sophorolipid structure on the size of particles, J. Chem. Sci. 120 (2008) 515–520.

DOI: 10.1007/s12039-008-0080-6

Google Scholar

[46] K. Kathiresan, S. Manivannan, M.A. Nabeel, B. Dhivya, Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment, Colloids and Surfaces B: Biointerfaces, 71 (2009) 133-137.

DOI: 10.1016/j.colsurfb.2009.01.016

Google Scholar

[47] A.R. Shahverdi, A. Fakhimi, H.R. Shahverdi, S.M. Minaian, Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphyloccocus aureus and Escherichia coli, Nanomed. 3 (2007) 168-171.

DOI: 10.1016/j.nano.2007.02.001

Google Scholar

[49] Y. Hu, C. Li, F. Gu, Y. Zhao, Facile flame synthesis and photoluminescent properties of core/shell TiO2/SiO2 nanoparticles. J. Alloy Comp. 432 (2007) L5-L9.

DOI: 10.1016/j.jallcom.2006.05.134

Google Scholar

[50] S.W. Han, Y. Kim, K. Kim, Dodecanethiol-Derivatized Au/Ag Bimetallic Nanoparticles: TEM, UV/VIS, XPS, and FTIR Analysis, J. Colloid. Interface Sci. 208 (1998) 272-278.

DOI: 10.1006/jcis.1998.5812

Google Scholar

[51] G.M. Gadd, Heavy metal accumulation by bacteria and other microorganisms, Experientia, 46 (1990) 834-840.

DOI: 10.1007/bf01935534

Google Scholar

[52] N. Kuyucak, B. Volesky, F.L. Raton, Biosorption of heavy metals, CRC Press, Boca Raton, 1990.

Google Scholar

[53] J. Bender, J.P. Gould, Y. Vatcharapijiarn, J.S. Young, S. Phillip, Removal of zinc and manganese from contaminated water with cyanobacteria mats, Water Environ. Res, 66 (1994) 679-683

DOI: 10.2175/wer.66.5.3

Google Scholar

[54] J.L. Gardea-Torresdey, K.M. Becker-Hapak, J.M. Hosea, D.W. Darnell, Effect of chemical modification of algal carboxyl groups on metal ion binding, Environ. Sci. Technol. 19 (1990) 1372-1378.

DOI: 10.1021/es00079a011

Google Scholar

[55] Z.A. Mohamed, Removal of cadmium and manganese by a non-toxic strain of the freshwater cyanobacterium, Gloeothece magna, Water Res. 35 (2001) 4405-4409.

DOI: 10.1016/s0043-1354(01)00160-9

Google Scholar

[56] M. Gericke, A. Pinches, Microbial Production of Gold Nanoparticles, Gold Bulletin, 39 (2006) 22–28.

DOI: 10.1007/bf03215529

Google Scholar

[57] I. Maliszewska, Z, Sadowski, Biological synthesis of silver nanoparticles, J. Physics: Conf. Ser. 146 (2009) 1-6.

Google Scholar

[58] D. Kaplan, D. Christiaen, S.M. Arad, Chelating Properties of Extracellular Polysaccharides from Chlorella spp, Appl. Environ. Microbiol. 53 (1987) 2953-2956.

DOI: 10.1128/aem.53.12.2953-2956.1987

Google Scholar

[59] M. Catauro, M.G. Raucci, F.D. De Gateano, A. Marotta, Antibacterial and bioactive silver containing Na2O CaO 2SiO2 glass prepared by sol-gel method, J. Mater. Sci. Mater. Med. 15 (2004) 831-837.

DOI: 10.1023/b:jmsm.0000032825.51052.00

Google Scholar

[60] J.H. Crabtree, R.J. Burchette, R.A. Siddigi, I.T. Huen, L.L. Handott, A. Fishman, The efficacy of silver-ion implanted catheters in reducing peritoneal dialysis-related infections, Perit. Dial. Int. 23 (2003) 368-374.

DOI: 10.1177/089686080302300410

Google Scholar

[61] L. Zhang, J.C. Yu, H.Y. Yip, Q. Li, K.W. Kwong, A.W. Xu, P.K. Wong, Ambient light reduction strategy to synthesize silver nanoparticles and silver-coated TiO2 with enhanced photocatalytic and bactericidal activities, Langmuir, 19 (2003) 10372-10380.

DOI: 10.1021/la035330m

Google Scholar

[62] S. Pal, Y.K. Tak, J.M. Song, Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli, Appl. Environ. Microbiol. 73 (2007) 1712-1720.

DOI: 10.1128/aem.02218-06

Google Scholar

[63] A.J. Bard, K.B. Holt, Interaction of Silver (I) Ions with the Respiratory Chain of Escherichia coli: An Electrochemical and Scanning Electrochemical Microscopy Study of the Antimicrobial Mechanism of Micromolar Ag+, Biochem. 44 (2005) 13214-13223.

DOI: 10.1021/bi0508542

Google Scholar

[64] W.J. Schreurs, H. Rosenberg, Effect of silver ions on transport and retention of phosphate by Escherichia coli, J. Bacteriol. 152 (1992) 7-13.

DOI: 10.1128/jb.152.1.7-13.1982

Google Scholar

[65] P.D. Bragg, D.J. Rainnie, The effect of silver ions on the respiratory chain of Escherichia coli, Can. J. Microbiol. 228 (1974) 883-889.

DOI: 10.1139/m74-135

Google Scholar

[66] P. Dibrov, J. Dzioba, K.K. Gosink, C.C. Hase, Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholera, Antimicrob. Agents Chemother. 46 (2002) 2668-2670.

DOI: 10.1128/aac.46.8.2668-2670.2002

Google Scholar

[67] C.N. Lok, C.M. Ho, R. Chen, Q.Y. He, W.Y. Yu, H. Sun, P.K. Tam, J.F. Chiu, C.M. Che, Proteomic analysis of the mode of antibacterial action of silver nanoparticles, J. Proteome Res. 5 (2006) 916-924.

DOI: 10.1021/pr0504079

Google Scholar

[68] I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria, J. Colloid. Interface Sci. 275 (2004) 177-182.

DOI: 10.1016/j.jcis.2004.02.012

Google Scholar

[69] J.R. Morones, J.L. Elechiguerra , A. Cammacho, K. Holt, J.B. Kouri, J.T. Ramirez, M.J. Yacaman, The bactericidal effect of silver nanoparticles, Nanotech. 16 (2005) 2346-2353.

DOI: 10.1088/0957-4484/16/10/059

Google Scholar

[70] S.P. Fricker, Medical uses of gold compounds: past, present, and future Gold Bul. 29 (1996) 53-60.

DOI: 10.1007/bf03215464

Google Scholar

[71] S.M. Hussain, K.L. Hess, J.M. Gearhart, K.T. Geiss, J.J. Schlager, In-vitro toxicity of nanoparticles in BRL 3A rat liver cells, Toxicol. In-Vitro, 19 (2005) 975–983.

DOI: 10.1016/j.tiv.2005.06.034

Google Scholar