[1]
S. Wang, N. Mamedova, N.A. Kotov, W. Chen, J. Studer, Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates, Nano. Lett. 2 (2002) 817-822.
DOI: 10.1021/nl0255193
Google Scholar
[2]
S.R. Nicewarner-Pena, R.G. Freeman, B.D. Reiss, L. He, D.J. Pena, I.D. Walton, R. Cromer, C.D. Keating, M.J. Natan, Submicrometer metallic barcodes, Sci. 294 (2001) 137-141.
DOI: 10.1126/science.294.5540.137
Google Scholar
[3]
M, Han, X. Gao, J.Z. Su, S. Nie, Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules, Nat. Biotechnol. 19 (2001) 631-635.
DOI: 10.1038/90228
Google Scholar
[4]
H.M. Joshi, D.R. Bhumkar, J. Kalpana, P. Varsha, S. Murali, Gold nanoparticles as carriers for efficient transmucosal insulin delivery, Langmuir, 22 (2006) 300-305.
DOI: 10.1021/la051982u
Google Scholar
[5]
S.S. Shiv, A. Ahmad, R. Pasricha, K. Islam, R. Kumar, M. Sastry, Immobilization of biogenic gold nanoparticles in thermally evaporated fatty acid and amine thin films, J. Colloid. Interface Sci. 274 (2004) 69-75.
DOI: 10.1016/j.jcis.2003.12.011
Google Scholar
[6]
T.A. Taton, C.A. Mirkin, R.L. Letsinger, Scanometric DNA array detection with nanoparticle probes, Sci. 289 (2000) 1757-1760.
DOI: 10.1126/science.289.5485.1757
Google Scholar
[7]
Y.C. Cao, R. Jin, C.A. Mirkin, Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection, Sci. 297 (2002) 1536-1540.
DOI: 10.1126/science.297.5586.1536
Google Scholar
[8]
K.K. Sandhu, C.M. McIntosh, J. M. Simard, S.W. Smith, V.M. Rotello, Gold nanoparticle mediated transfection of mammalian cells, Bioconjugate. Chem. B, 13 (2002) 3-6.
DOI: 10.1021/bc015545c
Google Scholar
[9]
D.D. Evanoff, G. Chumanov, Synthesis and optical properties of silver nanoparticles and arrays, Chem. Phys. Chem. 6 (2005) 1221-1231.
DOI: 10.1002/cphc.200500113
Google Scholar
[10]
M.C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev. 104 (2004) 293–346.
DOI: 10.1021/cr030698+
Google Scholar
[11]
C.J. Murphy, A.M. Gole, S.E. Hunyadi, J.W. Stone, P.N. Sisco, A. Alkilany et al., Gold nanoparticles in biology: Beyond toxicity to cellular imaging, Acc. Chem. Res. (2008)
DOI: 10.1021/ar800035u
Google Scholar
[12]
A.R. Tao, S. Habas, P.D. Yang, Shape Control of Colloidal Metal Nanocrystals, Small, 4 (2008) 310–325.
DOI: 10.1002/smll.200701295
Google Scholar
[13]
H.J. Jeon, S.C. Yi, S.G. Oh, Preparation and antibacterial effects of Ag-SiO2 thin films by sol-gel method, Biomaterials, 24 (2003) 4921–4928.
DOI: 10.1016/s0142-9612(03)00415-0
Google Scholar
[14]
J.S. Kim, E. Kuk, K.N. Yu., et al., Antimicrobial effects of silver nanoparticles, Nanomed. 3 (2007) 95–101.
Google Scholar
[15]
M.J. Eckelman, T.E. Graedel, Silver emissions and their environmental impacts: a multilevel assessment. Environ. Sci. Technol. 41 (2007) 6283–6289.
DOI: 10.1021/es062970d
Google Scholar
[16]
C.W. Corti, R.J. Holliday, D.T. Thompson, Developing new industrial applications for gold: Gold nanotechnology, Gold Bull. 35 (2002) 111-117.
DOI: 10.1007/bf03214852
Google Scholar
[17]
M.B. Cortie, The weird world of nano scale gold, Gold Bull. 37 (2004) 12-19.
Google Scholar
[18]
C.W. Corti, R.J. Holliday, Commercial aspects of gold applications: From materials science to chemical science, Gold Bull. 37 (2004) 20-26.
DOI: 10.1007/bf03215513
Google Scholar
[19]
H. Huang, X. Yang, One-step, shape control synthesis of gold nanoparticles stabilized by 3-thiopheneacetic acid, Colloids and Surfaces A: Physicochem. Eng. Aspects, 255 (2005) 11-17.
DOI: 10.1016/j.colsurfa.2004.12.020
Google Scholar
[20]
C. Burda, X. Chen, R. Narayanan, M. A. El-Sayed, Chemistry and properties of nanocrystals of different shapes, Chem. Rev. 105 (2005) 1025-1102.
DOI: 10.1021/cr030063a
Google Scholar
[21]
E. Katz, I. Willner, Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications, Angew, Chem. Int. Ed. 43 (2004) 6042-6108.
DOI: 10.1002/anie.200400651
Google Scholar
[22]
N.L. Rosi, C.A. Mirkin, "Nanostructures in biodiagnostics, Chem. Rev. 105 (2005) 1547–1562.
DOI: 10.1021/cr030067f
Google Scholar
[23]
J. Chen, B.J. Wiley, Z.Y. Li, D. Campbell, F. Saeki, H. Cang, A. Leslie, J. Lee, X. Li, Y. Xia, Gold Nanocages: Engineering Their Structure for Biomedical Applications, Adv Mater, 17 (2005) 2255-2261.
DOI: 10.1002/adma.200500833
Google Scholar
[24]
S.S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad, M. Sastry, Biological synthesis of triangular gold nanoprisms, Nat. Mater, 3 (2004) 482-488.
DOI: 10.1038/nmat1152
Google Scholar
[25]
K. Govindaraju, S.K. Basha, V.G. Kumar, G. Singaravelu, Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis), J. Mater. Sci. 43 (2008) 5115–5122.
DOI: 10.1007/s10853-008-2745-4
Google Scholar
[26]
P.R. Selvakannan, S. Mandal, S. Phadtare, Renu Pasricha, M. Sastry, Capping of gold nanoparticles by the amino acid lysine renders them water-dispersible, Langmuir, 19 (2003) 3545-3549.
DOI: 10.1021/la026906v
Google Scholar
[27]
B. Nair, T. Pradeep, Coalescence of Nanoclusters and Formation of Submicron Crystallites Assisted by Lactobacillus Strains, Crys Growth Des, 2 (2002) 293-298.
DOI: 10.1021/cg0255164
Google Scholar
[28]
S. Senapati, A. Ahmad, M.I. Khan, M. Sastry, R. Kumar, Extracellular Biosynthesis of Bimetallic Au–Ag Alloy Nanoparticles, Small, 1 (2005) 517-520.
DOI: 10.1002/smll.200400053
Google Scholar
[29]
G. Singaravelu, J.S. Arockiamary, V. Ganesh Kumar, K. Govindaraju, A novel extracellular biosynthesis of monodisperse gold nanoparticles using marine algae, Sargassum wightii Greville, Colloids and Surfaces B: Biointerfaces 57 (2007) 97–101.
DOI: 10.1016/j.colsurfb.2007.01.010
Google Scholar
[30]
C.M. Ramakritinan, Sugandha Shankar, M. Anand, A.K. Kumaraguru, Biosynthesis of silver, gold and bimetallic alloy (Ag:Au) Nanoparticles from green alga, Lyngpya sp. Proc. 3rd Nat. Conf. on Nanaomaterials and Nanotechnology, Amity University, Lucknow 21st -23rd December 2010, Int. J. Mindshare, 1(1): 174-187.
Google Scholar
[31]
S. Mandal, S. Phadtare, M. Sastry, Interfacing biology with nanoparticles, Curr. Appl. Phy. 5 (2005):118-127.
Google Scholar
[32]
M. Brust, C.J. Kiely, Some recent advances in nanostructure preparation from gold and silver particles: a short topical review, Colloids and Surfaces A: Physicochem. Eng. Aspects, 202 (2002) 175-186.
DOI: 10.1016/s0927-7757(01)01087-1
Google Scholar
[33]
M. Kowshik, S. Ashtaputre, S. Kharrazi, W. Vogel, J. Urban, S.K. Kulkarni, K.M. Paknikar, Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3, Nanotech. 14 (2003) 95-100.
DOI: 10.1088/0957-4484/14/1/321
Google Scholar
[34]
P.V. Dunlap, K. Kita-Tsukamoto, J.B. Waterbury, S.M. Callahan, Isolation and characterization of a visibly luminous variant of Vibrio fischeri strain ES114 from the sepiolid squid Euprymna scolopes, Arch. Microbiol. 164 (1995) 194–202.
DOI: 10.1007/bf02529971
Google Scholar
[35]
S. Shrivastava, T. Bera, A. Roy, G. Singh, P. Ramachandrarao, D. Dash, Characterization of enhanced antibacterial effects of novel silver nanoparticles, Nanotech. 18 (2007) 1-9.
DOI: 10.1088/0957-4484/18/22/225103
Google Scholar
[36]
S. Kanchana Devi, Biosysnthesis of silver nanoparticles from seaweeds of Gulf of Mannar, M.Phil., Dissertation submitted to Madurai Kamaraj University, Madurai, India, 2009, pp:32.
Google Scholar
[37]
K. Nealson, J.W. Hastings, The luminous bacteria, in: A. Balows, H. G. Truper, M. Dworkin, W. Harder, K.H. Schleifer (Eds.). The prokaryotes: A handbook for the biology of bacteria. Ecophysiology, isolation, identification, applications, 2nd ed, Vol.1. Springer-Verlag, Berlin, Germany, 1992, p.625–639.
DOI: 10.2307/1312033
Google Scholar
[38]
K.Y. Yoon, J. Hoon Byeon, J.H. Park, J. Hwang, Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles, Sci. Total Environ. 373 (2007) 572-575
DOI: 10.1016/j.scitotenv.2006.11.007
Google Scholar
[39]
N.J. Helmstetter, Antimicrobial Effects of Silver and Gold Nanoparticles Alone, and Functionalized with Ampicillin. Kalamazoo College, Department of Biological Sciences, Western Michigan University, M.Sc. Thesis, 2010, pp.1-24.
Google Scholar
[40]
A.W. Bauer, W.M.M. Kirby, J.C. Sherris, M. Turck, Antibiotic susceptibility testing by a standardized single disk method, Am. J. Clin. Pathol. 45 (1966) 493–496.
DOI: 10.1093/ajcp/45.4_ts.493
Google Scholar
[41]
S. Underwood, P. Mulvaney, Effect of the Solution Refractive Index on the Color of Gold Colloids, Langmuir, 10 (1994) 3427.
DOI: 10.1021/la00022a011
Google Scholar
[42]
P. Mulvaney, Surface Plasmon Spectroscopy of Nanosized Metal Particles, Langmuir, 12 (1996) 788-200.
DOI: 10.1021/la9502711
Google Scholar
[43]
M.D. Musick, C.D. Keating, L.A. Lyon, S.L. Botsko, D.J. Pena, W.D. Holliway, T.M. MeEvoy, J.N. Richardson, M.J. Natan, Metal films prepared by stepwise assembly. 2. construction and characterization of colloidal Au and Ag multilayers, Chem. Mater. 12 (2000) 2869-2881.
DOI: 10.1021/cm990714c
Google Scholar
[44]
H. Kong, J. Jang, One-step fabrication of silver nanoparticle embedded polymer nanofibers by radical-mediated dispersion polymerization, Chem. Commun. 30 (2006) 3010-3012.
DOI: 10.1039/b605286j
Google Scholar
[45]
M.P. Kasture, P. Patel, A.A. Prabhune, C.V. Ramana, A.A. Kulkarni, B.L.V. Prasad, Synthesis of silver nanoparticles by sophorolipids: Effect of temperature and sophorolipid structure on the size of particles, J. Chem. Sci. 120 (2008) 515–520.
DOI: 10.1007/s12039-008-0080-6
Google Scholar
[46]
K. Kathiresan, S. Manivannan, M.A. Nabeel, B. Dhivya, Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment, Colloids and Surfaces B: Biointerfaces, 71 (2009) 133-137.
DOI: 10.1016/j.colsurfb.2009.01.016
Google Scholar
[47]
A.R. Shahverdi, A. Fakhimi, H.R. Shahverdi, S.M. Minaian, Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphyloccocus aureus and Escherichia coli, Nanomed. 3 (2007) 168-171.
DOI: 10.1016/j.nano.2007.02.001
Google Scholar
[49]
Y. Hu, C. Li, F. Gu, Y. Zhao, Facile flame synthesis and photoluminescent properties of core/shell TiO2/SiO2 nanoparticles. J. Alloy Comp. 432 (2007) L5-L9.
DOI: 10.1016/j.jallcom.2006.05.134
Google Scholar
[50]
S.W. Han, Y. Kim, K. Kim, Dodecanethiol-Derivatized Au/Ag Bimetallic Nanoparticles: TEM, UV/VIS, XPS, and FTIR Analysis, J. Colloid. Interface Sci. 208 (1998) 272-278.
DOI: 10.1006/jcis.1998.5812
Google Scholar
[51]
G.M. Gadd, Heavy metal accumulation by bacteria and other microorganisms, Experientia, 46 (1990) 834-840.
DOI: 10.1007/bf01935534
Google Scholar
[52]
N. Kuyucak, B. Volesky, F.L. Raton, Biosorption of heavy metals, CRC Press, Boca Raton, 1990.
Google Scholar
[53]
J. Bender, J.P. Gould, Y. Vatcharapijiarn, J.S. Young, S. Phillip, Removal of zinc and manganese from contaminated water with cyanobacteria mats, Water Environ. Res, 66 (1994) 679-683
DOI: 10.2175/wer.66.5.3
Google Scholar
[54]
J.L. Gardea-Torresdey, K.M. Becker-Hapak, J.M. Hosea, D.W. Darnell, Effect of chemical modification of algal carboxyl groups on metal ion binding, Environ. Sci. Technol. 19 (1990) 1372-1378.
DOI: 10.1021/es00079a011
Google Scholar
[55]
Z.A. Mohamed, Removal of cadmium and manganese by a non-toxic strain of the freshwater cyanobacterium, Gloeothece magna, Water Res. 35 (2001) 4405-4409.
DOI: 10.1016/s0043-1354(01)00160-9
Google Scholar
[56]
M. Gericke, A. Pinches, Microbial Production of Gold Nanoparticles, Gold Bulletin, 39 (2006) 22–28.
DOI: 10.1007/bf03215529
Google Scholar
[57]
I. Maliszewska, Z, Sadowski, Biological synthesis of silver nanoparticles, J. Physics: Conf. Ser. 146 (2009) 1-6.
Google Scholar
[58]
D. Kaplan, D. Christiaen, S.M. Arad, Chelating Properties of Extracellular Polysaccharides from Chlorella spp, Appl. Environ. Microbiol. 53 (1987) 2953-2956.
DOI: 10.1128/aem.53.12.2953-2956.1987
Google Scholar
[59]
M. Catauro, M.G. Raucci, F.D. De Gateano, A. Marotta, Antibacterial and bioactive silver containing Na2O CaO 2SiO2 glass prepared by sol-gel method, J. Mater. Sci. Mater. Med. 15 (2004) 831-837.
DOI: 10.1023/b:jmsm.0000032825.51052.00
Google Scholar
[60]
J.H. Crabtree, R.J. Burchette, R.A. Siddigi, I.T. Huen, L.L. Handott, A. Fishman, The efficacy of silver-ion implanted catheters in reducing peritoneal dialysis-related infections, Perit. Dial. Int. 23 (2003) 368-374.
DOI: 10.1177/089686080302300410
Google Scholar
[61]
L. Zhang, J.C. Yu, H.Y. Yip, Q. Li, K.W. Kwong, A.W. Xu, P.K. Wong, Ambient light reduction strategy to synthesize silver nanoparticles and silver-coated TiO2 with enhanced photocatalytic and bactericidal activities, Langmuir, 19 (2003) 10372-10380.
DOI: 10.1021/la035330m
Google Scholar
[62]
S. Pal, Y.K. Tak, J.M. Song, Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli, Appl. Environ. Microbiol. 73 (2007) 1712-1720.
DOI: 10.1128/aem.02218-06
Google Scholar
[63]
A.J. Bard, K.B. Holt, Interaction of Silver (I) Ions with the Respiratory Chain of Escherichia coli: An Electrochemical and Scanning Electrochemical Microscopy Study of the Antimicrobial Mechanism of Micromolar Ag+, Biochem. 44 (2005) 13214-13223.
DOI: 10.1021/bi0508542
Google Scholar
[64]
W.J. Schreurs, H. Rosenberg, Effect of silver ions on transport and retention of phosphate by Escherichia coli, J. Bacteriol. 152 (1992) 7-13.
DOI: 10.1128/jb.152.1.7-13.1982
Google Scholar
[65]
P.D. Bragg, D.J. Rainnie, The effect of silver ions on the respiratory chain of Escherichia coli, Can. J. Microbiol. 228 (1974) 883-889.
DOI: 10.1139/m74-135
Google Scholar
[66]
P. Dibrov, J. Dzioba, K.K. Gosink, C.C. Hase, Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholera, Antimicrob. Agents Chemother. 46 (2002) 2668-2670.
DOI: 10.1128/aac.46.8.2668-2670.2002
Google Scholar
[67]
C.N. Lok, C.M. Ho, R. Chen, Q.Y. He, W.Y. Yu, H. Sun, P.K. Tam, J.F. Chiu, C.M. Che, Proteomic analysis of the mode of antibacterial action of silver nanoparticles, J. Proteome Res. 5 (2006) 916-924.
DOI: 10.1021/pr0504079
Google Scholar
[68]
I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria, J. Colloid. Interface Sci. 275 (2004) 177-182.
DOI: 10.1016/j.jcis.2004.02.012
Google Scholar
[69]
J.R. Morones, J.L. Elechiguerra , A. Cammacho, K. Holt, J.B. Kouri, J.T. Ramirez, M.J. Yacaman, The bactericidal effect of silver nanoparticles, Nanotech. 16 (2005) 2346-2353.
DOI: 10.1088/0957-4484/16/10/059
Google Scholar
[70]
S.P. Fricker, Medical uses of gold compounds: past, present, and future Gold Bul. 29 (1996) 53-60.
DOI: 10.1007/bf03215464
Google Scholar
[71]
S.M. Hussain, K.L. Hess, J.M. Gearhart, K.T. Geiss, J.J. Schlager, In-vitro toxicity of nanoparticles in BRL 3A rat liver cells, Toxicol. In-Vitro, 19 (2005) 975–983.
DOI: 10.1016/j.tiv.2005.06.034
Google Scholar