p.1
p.21
p.65
p.103
p.131
p.159
p.181
p.197
Synthesis and Characterization of Metal and Semiconductor Nanowires
Abstract:
One-dimensional nanowires (NWs) have attracted considerable attention in recent years because of their novel physical properties and potential applications as interconnects in nanometre-scale electronics. NWs have potential applications in nanoscale electronics, optoelectronics, photonics, sensors, and solar cells due to their unique electrical, chemical, and optical properties. Several chemical and physical methods are commonly used to produce NWs. Among them, electrochemical synthesis and vapour-liquid-solid (VLS) methods to produce NWs have become popular among scientific workers due to a number of advantages. Synthesis of NWs using anodic alumina and polymer templates in an electrochemical cell has been described in detail as investigated in our laboratory. Characterization of metal and semiconductor NWs has been accomplished using scanning electron microscope (SEM), field emission scanning electron microscope (FESEM), high resolution transmission microscope (HRTEM), X-ray diffraction (XRD), and energy dispersive X-ray analysis (EDAX). Morphology of NWs has been revealed by SEM, structure by TEM, crystallinity by XRD and chemical composition by EDAX. I-V characteristics of copper and semiconductor NWs were recorded in-situ, as grown in pores of anodic alumina template, using Dual Source Meter (Keithley Model 4200 SCS) with platinum probes for contacts. Resonating tunneling diode (RTD) characteristics of fabricated NWs have been investigated. Bulk production of Copper NWs has been described by seed growth technique. Applications of NWs are not covered in any detail under this review. Table of Contents
Info:
Periodical:
Pages:
21-64
Citation:
Online since:
May 2013
Authors:
Price:
Сopyright:
© 2013 Trans Tech Publications Ltd. All Rights Reserved
Citation:
[1] Ratner and D. Ratner, Nanotechnology: A gentle introduction to the next big idea, Pearson Education Publication, London, 2003.
[2] G. Z. Cao, Nanostructures and Nanomaterials, Imperial College Press, London, 2004.
[3] S. Bandyopadhyay and H.S. Nalwa (Eds.), Quantum Dots and Nanowires, American Scientific Publishers, USA, 2003.
[4] W.M. Tolles and B.B. Rath, Nanomaterials: Synthesis, Processing and Applications (Eds. A.S. Adelstein and R.C. Cammarata), Inst. of Physics, 1996, pp.545-553; Nanotechnology, a stimulus for innovation, Curr. Sci. 85 (12) (2003) 1746-1759.
[5] J. Sarkar, G.G. Khan and A. Basumallick, Nanowires: properties, applications and synthesis via porous anodic aluminium oxide template, Bull. Mater. Sci. 30(3) (2007) 271-290.
[6] H. Sun Shin, J. Y. Song and J. Yu, Template-assisted electrochemical synthesis of cuprous oxide nanowires, Materials Letters 63 (2009) 397-399.
[7] R. Ingunta, S. Piazza and C. Sunseri, Novel procedure for the template synthesis of metal nanostructures, Electrochem. Commun. 10 (2008) 506-509.
[8] M. S. Dresselhaus, Y. M. Lin, O. Rabin, M. R. Black, G. Dresselhaus, Nanowires, A review listed on: mgm.mit.edu/group/x986.pdf, Jan. 2, 2003.
[9] H. S. Virk, Fabrication and Characterization of Copper Nanowires, in: Abbass Hashim (Ed.), Nanowires - Implementations and Applications, InTech Open Publishers, Rijeka, 2011, pp.455-470, ttp://www.intechopen.com/articles/show
[10] Y. Cui, and C.M. Lieber, Functional nanoscale electronic devices assembled using silicon nanowire building blocks, Science 291 (2001), 851–853.
[11] X. Duan, Y. Huang, Y. Cui, J. Wang and C.M. Lieber, Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices, Nature 409 (2001) 66–69.
DOI: 10.1038/35051047
[12] R. Aggarwal and C.M. Leiber, Semiconductor nanowires: optics and optoelectronics, Appl. Phys. A 85 (2006) 209-215.
[13] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Room-temperature ultraviolet nanowire nanolasers, Science 292 (2001) 1897–1899.
[14] Y. Cui, Q. Wei, H. Park, and C.M. Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science 293 (2001) 1289–1292.
[15] M. Law, L.E. Greene, J.C. Johnson, R. Saykally and P. Yang, Nanowire dye-sensitized solar cells, Nat. Mater. 4(6) (2005) 455–459.
DOI: 10.1038/nmat1387
[16] Y. Li, F. Qian, J. Xiang and C.M. Lieber, Nanowire electronic and optoelectronic devices, Mater. Today 9(10) (2006) 18–27.
[17] C. Thelander, P. Agarwal, S. Brongersman, J. Eymery, L.F. Feiner, A. Forchel, M. Scheffler, W. Riess, B.J. Ohlsson, U. Gösele and L. Samuelson, Nanowire-based one-dimensional electronics, Mater. Today 9(10) (2006) 28–35.
[18] K. Ramanathan, M.A. Bangar, M. Yun, W. Chen, N.V. Myung and A. Mulchandani, Bioaffinity sensing using biologically functionalized conducting-polymer nanowire, J. Am. Chem. Soc. 127(2) (2005) 496–497.
DOI: 10.1021/ja044486l
[19] N. Wang, Y. Cai and R.Q. Zhang, Growth of nanowires, Mater. Sci. Eng. R-Rep.60 (2008) 1–51.
[20] G. Cao and D. Liu, Template based synthesis of nanorod, nanowire, and nanotube arrays, Adv. In Colloid & Interface Sci. 136 (2008) 45-64.
[21] S. Amrita Kaur, Preparation and Applications of Ion Track Filters, Ph. D. Thesis submitted to Guru Nanak Dev University, Amritsar, 1998 (Unpublished).
[22] S. Amrita Kaur, H.S. Virk and S.K. Chkravarti, Application of ion track filters: Our experience, Proc. 3rd Int. Conf. on Material Science applications of Ion Beam Techniques held at Seeheim, Germany, 9-12 September, 1996. Materials Science Forum, 248-249 (1997) 467-470.
[23] H.S. Virk and S. Amrita Kaur, Ion Track Filters: Properties, Development and Applications, Curr. Sci. 75 (8) (1998) 765-770.
[24] H.S. Virk, S. Amrita Kaur and G.S. Randhawa, Effects on insulators of swift-heavy-ions radiation: Ion track technology, J. of Phys. D: App. Phys. 31 (1998) 3139-3145.
[25] G.A. Ozin, Nanochemistry: synthesis in diminishing dimensions, Adv. Mater. 4 (1992) 612-649.
[26] R.J. Tonucci, B.J. Justus, A.J. Campillo and C.E. Ford, Nanochannel array glass, Science 258 (1992) 783-785.
[27] J.Y. Ying, Nanoporous Systems and Templates: The Unique Self-Assembly and Synthesis of Nanostructures, Science Spectra 18 (1999) 56-63.
[28] J.W. Diggle, T.C. Downie and C.W. Goulding, Anodic oxide films on aluminum. Chem. Rev. 69 (1969) 365-405.
DOI: 10.1021/cr60259a005
[29] J.P. O'Sullivan and G.C. Wood, The morphology and mechanism of formation of porous anodic films on aluminum. Proc. Roy. Soc. London A 317 (1970) 511-543.
[30] A.P. Li, F. Muller, A. Birner, K. Neilsch and U. Gosele, Hexagonal pore arrays with a 50-420 nm inter-pore distance formed by self-organization in anodic alumina. J. Appl. Phys. 84 (1998) 6023-6026.
DOI: 10.1063/1.368911
[31] O. Jessenky, F. Muller and U. Gossele, Self-organized formation of hexagonal pore arrays in anodic alumina, Appl. Phys. Lett. 72 (1998) 1173-1175.
DOI: 10.1063/1.121004
[32] D.A. Mawiawi, N. Coombs and M. Moskovits, Magnetic-properties of Fe deposited into anodic aluminum-oxide pores as a function of particle-size, J. Appl. Phys. 70 (1991) 4421-4425.
DOI: 10.1063/1.349125
[33] Z. Zhang, D. Gekhtman, M.S. Dresselhaus and J.Y. Ying, Processing and characterization of single-crystalline ultrafine bismuth nanowires. Chem. Mater. 11 (1999) 1659-1665.
DOI: 10.1021/cm9811545
[34] F. Li, L. Zhang and R.M. Metzger, On the growth of highly ordered pores in anodized aluminum oxide, Chem. Mater. 10 (1998) 2470-2480.
DOI: 10.1021/cm980163a
[35] V.D.R. Caffarena, J.L. Capataneo, R.A. Simao and A.P. Guimaraes, Preparation of electrodeposited Cobalt nanowires, Mater. Res. 9(2) (2006) 205-208.
[36] E. Ferain and R. Legras, Track-etched membrane - dynamics of pore formation, Nucl. Instrum. Methods B 84 (1993) 331-336.
[37] M.E. Toimil Molares, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I.U. Schuchert and J. Vetter, Single-crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes, Adv. Mater. 13 (2001) 62-65.
DOI: 10.1002/1521-4095(200101)13:1<62::aid-adma62>3.0.co;2-7
[38] C.R. Martin, Nanomaterials: A membrane-based synthetic approach, Science 266 (1994)1961-1966.
[39] M.E. Toimil Molares, J. Brotz, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I.U. Schuchert, Trautmann and J. Vetter, Etched heavy ion tracks in polycarbonate as template for copper nanowires, Nucl. Instrum. & Meth. Phys. Res. B 185 (2001) 192-197.
[40] H.S. Virk, Heavy ion tracks route to nanotechnology, Adv. Mater. Res. 67 (2009) 115-120.
[41] L. Sun, P. Searson and C.L. Chien, Electrochemical deposition of nickel nanowire arrays in single- crystal mica films, Appl. Phys. Lett. 74 (1999) 2803-2805.
DOI: 10.1063/1.124019
[42] C.A. Huber and T.E. Huber, A novel microstructure: Semiconductor-impregnated porous Vycor glass. J. Appl. Phys. 64 (1988) 6588-6590.
DOI: 10.1063/1.342037
[43] J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T. W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins and J.L. Schlenker, A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc., 114 (1992) 10834-10843.
DOI: 10.1021/ja00053a020
[44] C.G. Wu and T. Bein, Conducting polyaniline filaments in a mesoporous channel host, Science 264 (1994) 1757-1759.
[45] E. Braun, Y. Eichen, U. Sivan and G. Ben-Yoseph, DNA-templated assembly and electrode attachment of a conducting silver wire, Nature 391 (1998) 775-778.
DOI: 10.1038/35826
[46] T. Thurn-Albrecht, J. Schotter, G.A. Kastle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C.T. Black, M.T. Tuominen and T.P. Russell, Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates, Science 290 (2000) 2126-2129.
[47] K. Liu, C.L. Chien, P.C. Searson and Y.Z. Kui, Structural and magneto-transport properties of electrodeposited bismuth nanowires. Appl. Phys. Lett. 73 (1998) 1436-1438; K. Liu, C. Chien and P.C. Searson, Finite-size effects in bismuth nanowires, Phys. Rev. B 58 (1998) R14681-R14684.
[48] R. Ferre, K. Ounadjela, J.M. George, L. Piraux and S. Dubois, Magnetization processes in nickel and cobalt electrodeposited nanowires. Phys. Rev. B 56 (1997) 14066-14075.
[49] T. Mingliang, J. Wang, J. Kurtz, T.E. Mallouk and M.H.W. Chan: Electrochemical Growth of Single-Crystal Metal Nanowires via a Two-Dimensional Nucleation and Growth Mechanism, Nano Letters 3 (2003) 919-923.
DOI: 10.1021/nl034217d
[50] H. Zeng, M. Zheng, R. Skomski, D.J. Sellmyer, Y. Liu, L. Menon and S. Bandyopadhyay, Magnetic properties of self-assembled Co nanowires of varying length and diameter, J. Appl. Phys. 87 (2000) 4718-4720.
DOI: 10.1063/1.373137
[51] Y. Peng, H.L. Zhang, S.L. Pan and H.L. Li, Magnetic properties and magnetization reversal of α-Fe nanowires deposited in alumina film, J. Appl. Phys. 87 (2000) 7405-7409.
DOI: 10.1063/1.373001
[52] M. Motoyama, Y. Fakunaka, T. Sakka, Y. Ogata and S. Kikuchi: Electrochemical processing of Cu and Ni nanowire arrays, J. Electroanal. Chem. 584 (2005), 84-91.
[53] G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R.B. Wehrspohn, J. Choi, H. Hofmeister and U. Gosele, Highly ordered monocrystalline silver nanowire arrays, J. Appl. Phys. 91 (2002) 3243-3247.
DOI: 10.1063/1.1435830
[54] G.L. Hornyak, C.J. Patrissi and C.M. Martin, Fabrication, characterization, and optical properties of gold nanoparticle/porous alumina composites: the nonscattering Maxwell-Garnett limit, J. Phys. Chem. B 101 (1997) 1548-1555.
DOI: 10.1021/jp962685o
[55] G.Yi and W.Schwarzacher, Single crystal superconductor nanowires by electrodeposition, Appl. Phys. Lett. 74 (1999) 1746-1748.
DOI: 10.1063/1.123675
[56] D. Routkevitch, T. Bigioni, M. Moskovits and J.M. Xu, Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide templates, J. Phys. Chem., 100 (1996) 14073-14047.
DOI: 10.1021/jp952910m
[57] Blondel, J.P. Meier, B. Doudin and J.P. Ansermet, Giant magnetoresistance of nanowires of multilayers, Appl. Phys. Lett. 65 (1994) 3019-3021.
DOI: 10.1063/1.112495
[58] L. Piraux, I.M. George, J.F. Despres, C. Leroy, E. Ferain, R. Legras, K. Ounadjela and A. Fertt, Giant magnetoresistance in magnetic multilayered nanowires, Appl. Phys. Lett. 65 (1994) 2484-2486.
DOI: 10.1063/1.112672
[59] D. Almawlawi, C.Z. Liu and M. Moskovits, Nanowires formed in anodic oxide nano-templates, J.of Mater. Res. 9 (1994) 1014-1018.
[60] M.S. Sander, A.L. Prieto, R. Gronsky, T. Sands and A.M. Stacy, Fabrication of high-density, high aspect ratio large-area bismuth telluride nanowire arrays by electrodeposition into porous anodic alumina templates, Adv. Mater. 14 (2002) 665-667.
DOI: 10.1002/1521-4095(20020503)14:9<665::aid-adma665>3.0.co;2-b
[61] D.S. Xu, D.P. Chen, Y.J. Xu, X.S. Shi, G.L. Guo, L.L. Gui and Y.Q. Tang, Preparation of II-VI group semiconductor nanowire arrays by dc electrochemical deposition in porous aluminum oxide templates, Pure Appl. Chem. 72 (2000) 127-135.
[62] D. Xu, Y. Xu, D. Chen, G. Guo, L. Gui and Y. Tang, Preparation of CdS single-crystal nanowires by electrochemically induced deposition, Adv. Mater., 12 (2000) 520-522.
DOI: 10.1002/(sici)1521-4095(200004)12:7<520::aid-adma520>3.0.co;2-#
[63] M. Lai and D.J. Riley, Templated electrosynthesis of nanomaterials and porous structures, J. Colloid and Interface Sci. 323 (2008) 203-212.
[64] Bogomolov, Injection under high pressure of molten metals into crystalline materials containing regular cavities, Sov. Phys. Solid State 13 (1971) 815-818.
[65] J.Y. Ying, Z. Zhang, L. Zhang and M.S. Dresselhaus, US Patent 20016231744 (2001).
[66] R.M. Penner, M.P. Zach and F. Favier, US Patent 20056843902 (2005)
[67] M.P. Zach, K.H. Ng, J.C. Hemminger and R.M. Penner, Synthesis of molybdenum nanowires with millimeter-scale lengths using electrochemical step edge decoration, Chem. Mater. 14 (2002) 3206.
DOI: 10.1021/cm020249a
[68] M.P. Zach, K.H. Ng and R.M. Penner, Molybdenum nanowires by electrodeposition, Science 290 (2000) 2120.
[69] R.S. Wagner and W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth, Appl. Phys. Lett. 4 (1964) 89-91.
DOI: 10.1063/1.1753975
[70] Y. Wu and P. Yang, Direct observation of vapor-liquid-solid nanowire growth, J. Am. Chem. Soc. 123 (2001) 3165-3166.
DOI: 10.1021/ja0059084
[71] Y. Cui, L.J. Lauhon, M.S. Gudiksen, J. Wang and C.M. Lieber, Diameter-controlled synthesis of single crystal silicon nanowires, Appl. Phys. Lett. 78 (2001) 2214-2216.
DOI: 10.1063/1.1363692
[72] Y. Wu and P. Yang, Germanium nanowire growth via simple vapor transport. Chem. Mater., 120 (2000) 605-607.
DOI: 10.1021/cm9907514
[73] A.M. Morales and C.M. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires, Science 279 (1998) 208-211.
[74] M.K. Sunkara, S. Sharma, R. Miranda, G. Lian and E.C. Dickey, Bulk synthesis of silicon nanowires using a low-temperature vapor-liquid-solid method, Appl. Phys. Lett. 79 (2001) 1546-1548.
DOI: 10.1063/1.1401089
[75] S. Sharma, M.K. Sunkara, R. Miranda, G. Lian and E.C. Dickey, A novel low temperature synthesis method for semiconductor nanowires. In: H.W. Hahn, D.L. Feldheim, C.P. Kubiak, R. Tannenbaum and R.W. Siegel (Eds.), Synthesis, Functional Properties and Applications of Nanostructures, Mater. Res. Soc. Symp. Proc., San Francisco, Spring 2001, Materials Research Society Press, Pittsburgh, PA, Vol. 676 (2001) Y1.6.
[76] P.M. Parthangal, R.E. Cavichhi and M.R. Zachariah, A universal approach to electrically connecting nanowire arrays using nanoparticles: Application to a novel gas sensor architecture, Nanotechnology 17 (2006) 3786-3790.
[77] M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, and C.M. Lieber, Growth of nanowire superlattice structures for nanoscale photonics and electronics, Nature 415 (2002) 617–620.
DOI: 10.1038/415617a
[78] Y. Wu, R. Fan and P. Yang, Block-by-block growth of Si/SiGe superlattice nanowires, Nano Lett. 2 (2002) 83-86.
DOI: 10.1021/nl0156888
[79] M.T. Bjork, B.J. Ohlsson, T. Sass, A.I. Persson, C. Thelander, M.H. Magnusson, K. Deppert, L.R. Wallenberg and L. Samuelson, One-dimensional steeplechase for electrons realized, Nano Lett. 2 (2002) 87-89.
DOI: 10.1021/nl010099n
[80] N. Wang, Y.H. Tang, Y.F. Zhang, C.S. Lee and S.T. Lee, Nucleation and growth of Si nanowires from silicon oxide. Phys. Rev. B 58 (1998) R16024-R16026.
[81] N. Wang, Y.F. Zhang, Y.H. Tang, C.S. Lee and S.T. Lee, SiO2-enhanced synthesis of Si nanowires by laser ablation, Appl. Phys. Lett. 73 (1998) 3902-3904.
DOI: 10.1063/1.122930
[82] Y.F. Zhang, Y.H. Tang, N. Wang, C.S. Lee, I. Bello and S.T. Lee, One-dimensional growth mechanism of crystalline silicon nanowires, Journal of Crystal Growth 197 (1999) 136-140.
[83] Y.F. Zhang, Y.H. Tang, N. Wang, C.S. Lee, I. Bello and S.T. Lee, Germanium nanowires sheathed with an oxide layer, Physical Review B 61 (2000) 4518-4521.
[84] S.T. Lee, Y.F. Zhang, N. Wang, Y.H. Tang, I. Bello, C.S. Lee and Y.W. Chung, Semiconductor nanowires from oxides, J. Mater. Res. 14 (1999) 4503-4507.
[85] B. Gates, Y. Yin and Y. Xia, A solution-phase approach to the synthesis of uniform nanowires of crystalline selenium with lateral dimensions in the range of 10-30 nm, J. Am. Chem. Soc. 122 (2000) 12582-12583.
DOI: 10.1021/ja002608d
[86] B. Gates, B. Mayers, B. Cattle and Y. Xia, Synthesis and characterization of uniform nanowires of trigonal selenium. Adv. Funct. Mat. 12 (2002) 219-227.
DOI: 10.1002/1616-3028(200203)12:3<219::aid-adfm219>3.0.co;2-u
[87] B. Mayers, B. Gates, Y. Yin and Y. Xia, Large-scale synthesis of monodisperse nanorods of Se/Te alloys through a homogeneous nucleation and solution growth process, Adv. Mat. 13 (2001) 1380-1384.
DOI: 10.1002/1521-4095(200109)13:18<1380::aid-adma1380>3.0.co;2-w
[88] B. Gates, Y. Wu, Y. Yin, P. Yang and Y. Xia, Single-crystalline nanowires of Ag2Se can be synthesized by templating against nanowires of trigonal Se, J. Am. Chem. Soc. 123 (2001) 11500-11501.
DOI: 10.1021/ja0166895
[89] B. Gates, B. Mayers, Y. Wu, Y. Sun, B. Cattle, P. Yang and Y. Xia, Synthesis and characterization of crystalline Ag2Se nanowires through a template-engaged reaction at room temperature, Adv.Funct. Mat. 12 (2002) 679-686.
DOI: 10.1002/1616-3028(20021016)12:10<679::aid-adfm679>3.0.co;2-#
[90] C. A. Huber, T. E. Huber, M. Sadoqi, J. A. Lubin, S. Manalis and C. B. Prater, Nanowire array Composites, Science 263 (1994) 800-802.
[91] Z. Zhang, J. Y. Ying and M. S. Dresselhaus, Bismuth quantum-wire arrays fabricated by a vacuum melting and pressure injection process, J. Mater. Res. 131 (1998) 1745-1748.
[92] H.S. Virk, K. Kishore and V. Baloria, Fabrication of Copper Nanowires by Electrodeposition using Anodic Alumina and Polymer Templates. J. of Nano Research 10 (2010) 63-67.
[93] H.S. Virk, Fabrication of polycrystalline copper nanowires by electrodeposition in anodic alumina membrane and their characterization, Nano Trends 9(1) (2010) 1-9.
[94] J. Brotz, F. Maurer, T.W. Cornelius and M.E. Toimil Molares, Controlled deposition of Copper nanowires for field emission investigations, Micro. Anal. in Mater. Sci. Freiberg, 2005, pp.1-3.
[95] H. Cao, L. Wang, Y. Qiu and L. Zhang, Synthesis and I-V properties of aligned copper nanowires, Nanotechnology 17 (2006) 1736-1739.
[96] G. Riveros, H. Gomez and E.A. Dalchiele, Electrochemical Growth of Copper Nanowires: Structure Properties, Electrochem. Society http://www.electrochem.org/dl/ma/203/pdfs/1679.pdf
[97] T. Gao, G. Meng, Y. Wang, S. Sun and L. Zhang, Electrochemical synthesis of copper nanowires, J. Phys.: Condens. Matter 14 (2002) 355-363.
[98] B.J. Hansen, G. Lu and J. Chen, Direct oxidation growth of CuO nanowires from Copper-containing substances, J. of Nanomaterials, 2008, doi:10.1155/2008/830474, pp.1-7.
DOI: 10.1155/2008/830474
[99] R. Ingunta, S. Piazza and C. Sunseri, Template electrosynthesis of aligned Cu2O nanowires: Part I. abrication and characterization, Electrochimica Acta 53 (2008) 6504-6512.
[100] C. Schonenberger, B. M. I. Vander Zande, L. G. J. Fokkink, M. Henry, C. Schmid, M. Kniger, A. Bachtold, R. Huher, H. Birk and V. Stairfer, Template synthesis of nanowires in porous polycarbonate membranes: Electrochemistry and Morphology, J. Phys. Chem. B 101 (1997) 5497-5505.
DOI: 10.1021/jp963938g
[101] B. Hamrakulov, I.S. Kim, M.G. Lee, B.H. Park, Electrodeposited Ni, Fe, Co and Cu single and multilayer nanowire arrays on anodic aluminum oxide template, Trans. Nonferrous Met. Soc. China19 (2009) 83-87.
[102] M. Mikhaylova, M. Toprak, D.K. Kim, Y. Zhang and M. Muhammed, Nanowire formation by electrodeposition in modified nanoporous polycrystalline anodic alumina templates, Mater. Res. Soc.Symp. Proc. 704 (2002) W6.34.1-6.
[103] L. Menon, M. Zeng, H. Zeng, D.J. Sellmyer and S. Bandyopadhyay, Size Dependent Magnetic Properties of Fe Nanowires, J. Electron. Mater. 29 (2000) 510-514.
[104] S. Kumar, S. Kumar, R. Kumar and S.K. Chakarvarti, Morphological and magnetic characterization of electrodeposited cobalt nanowires, J. Mater. Sci. 39 (2004) 2951-2953.
[105] C. Kong, Z. Hu, H. Zhao, Y. Yang, X. Shang, L. Ren and Y. Wang, Preparation of Ag nanowire array electrode by transplantation and its electrochemical activities, Int. J. Electrochem. Sci. 2 (2007) 133-140.
[106] K. Nielsch, R. Wehrspohn, S.F.H. Kronmuller, J. Barthel, J. Kirschner and U. Gosele, Magnetic properties of 100 nm nickel nanowire arrays obtained from ordered porous alumina templates, MRS Symp. Proc. 636 (2001) D1.9 (1-6).
[107] I.Z. Rahman, K.M. Razeeb, M.A. Rahman and Md. Kamruzzaman, Fabrication and Characterization of nickel nanowires deposited on metal substrate, J. Magn. & Magn. Mater. 262 (2003) 166-169.
[108] T.M. Whitney, J.S. Jiang, P.C. Searson and C.L. Chien, Fabrication and magnetic properties of arrays of metallic nanowires, Science 261 (1993) 1316-1319.
[109] P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally , N. Morris, J. Pham, R. He and H.J. Choi, Controlled growth of ZnO nanowires and their optical properties, Adv. Func. Mat. 12 (2002) 323-331.
DOI: 10.1002/1616-3028(20020517)12:5<323::aid-adfm323>3.0.co;2-g
[110] X.J. Xu, G.T. Fei, W.H. Yu, X.W. Wang, L. Chen and L.D. Zhang, Preparation and formation mechanism of ZnS semiconductor nanowires made by the electrochemical deposition method, Nanotechnology 17 (2006) 426-429.
[111] Y. Huang, X. Duan, Y. Cui and C.M. Lieber, Gallium nitride nanodevices, Nano Letters 2 (2002) 101-104.
DOI: 10.1021/nl015667d
[112] H. S. Virk, Template synthesis and morphology of CdS nanowire arrays using anodic alumina membranes, Nano Trends 10 (2) (2011) 17-24.
[113] S.P. Mondal, A. Dhar and S.K. Roy, Optical properties of CdS nanowires prepared by dc electro-chemical deposition in porous alumina template, Mater. Sci. in Semicond. Processing 10 (2007) 185-193.
[114] G. Ghenescu, L. Ion, I. Enculescu, C. Tazlaoanu, V.A. Antohe, M. Sima, M. Enculescu, E. Matei, R. Neumann, O. Ghenescu, V. Covlea and S. Antohe, Electrical properties of electrodeposited CdS nanowires, Physica E 40 (2008) 2485-2488.
[115] J. Milam, L. Lauhon and J. Allen, Photoconductivity of sSemiconducting CdS Nanowires, Nanoscape 2(1) 2005) 43-47.
[116] D. Xu, Y. Xu, D. Chen, G. Guo, L. Gui and Y. Tang, Preparation and characterization of CdS nanowire arrays by dc electrodeposit in porous anodic aluminium oxide templates, Chem Phys. Lett. 325 (2000) 340-344.
[117] Y. Yang, H. Chen, Y. Mei, J. Chen, X. Wu and X. Bao, Anodic alumina template on Au/Si substrate and preparation of CdS nanowires, Solid State Comm. 123 (2002) 279-282.
[118] C. Ma, Y. Ding, D. Moore, X. Wang and Z.L. Wang, Single-Crystal CdSe Nanosaws, J. Am. Chem. Soc. 126 (2004) 708-709.
DOI: 10.1021/ja0395644
[119] X.S. Peng, J. Zhang, X.F. Wang, Y.W. Wang, L.X. Zhao, G.W. Meng and L.D. Zhang, Synthesis of highly ordered CdSe nanowire arrays embedded in anodic alumina membrane by electrodeposition in ammonia alkaline solution, Chem. Phys. Lett. 343 (2001) 470-474.
[120] R. Singh, R. Kumar and S.K. Chakarvarti, Non-galvanic template synthesis of Cdse nanowires using Anodic Alumina Membrane and their optical band gap determination, Mater. Lett. 62 (2008) 874-877.
[121] S. Kumar, S. Kumar, N.K. Verma and S.K. Chakarvarti, Fabrication of CdSe nanowires using template synthesis technique, J. Optoelectronics & Adv. Mater. 9(10) (2007) 3191-3193.
[122] S. Kumar, S. Kumar, N.K. Verma, S.K. Chakarvarti and J.K. Sharma, Electrochemical synthesis And laser induced time resolved luminescence behavior of CdSe nanowires, Digest J. of nomater. & Biostr. 3(4) (2008) 199-202.
[123] X.S. Peng, X.F. Wang, Y.W. Wang, C.Z. Wang, G.W. Meng and L.D. Zhang, Novel method synthesis of CdO nanowires, J. Phys. D: Appl. Phys. 35 (2002) L101-L104.
[124] B. Xiang, H.Z. Zhang, G.H. Li, F.H. Yang, F.H. Su, R.M. Wang, J. Xu, G.W. Lu, X.C. Sun, Q. Zhao and D.P. Yu, Green-light-emitting ZnSe nanowires fabricated via vapor phase growth, Appl. Phys. Lett. 82 (2003) 3330-3333.
DOI: 10.1063/1.1573334
[125] X. Duan, Y. Huang, Y. Cui, J. Wang and C.M. Lieber, Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature, 409 (2001) 66-69.
DOI: 10.1038/35051047
[126] X. Duan, J. Wang and C.M. Leiber, Synthesis and optical properties of gallium arsenide nanowires, Appl. Phys. Lett. 76 (2000) 1116-1118.
DOI: 10.1063/1.125956
[127] S. Kumar, Synthesis and characterization of Selenium nanowires using template synthesis, J. Experimental Nanosci. 4(4) (2009) 341-346.
[128] H.Y. Chao, J.H. Cheng, J.Y. Lu, Y.H. Chang, C.L. Cheng and Y.F. Chen, Growth and characterization of type-II ZnO/ZnTe core-shell nanowire arrays for solar cell applications, Superlattices and Microstructures 47 (1) (2010) 160-164.
[129] Y. Leprince-Wang, G.Y. Wang, X.Z. Zhang and D.P. Yu, Study on the microstructure and growth mechanism of electrochemical deposited ZnO nanowires, Journal of Crystal Growth 287 (1) (2006) 89-93.
[130] M. Chaudhari, A. Vohra, S.K. Chakarvarti and R. Kumar, Template synthesized Cu-Se microstructures as resonant tunneling diodes, J. Mater. Sci.: Mater. Electron 17 (2006) 189-192.
[131] R. Singh, R. Kumar and S.K. Chakarvarti, Size effect on I-V characteristics of low dimensional metal-semiconductor heterojunctions, Physica E 40 (2008) 591-593.
[132] M. Chaudhari, A. Vohra and S.K. Chakarvarti, Thermal annealing effects on Cu-Se resonant tunneling diodes fabricated by electrodeposition-assisted template synthesis technique, Mater. Sci. & Engg. B 149 (2008) 7-11.
[133] H.S. Virk, Template synthesis of Cu-Se heterojunctions using anodic alumina membrane and their characterization, Digest J. Nanomater. & Biostruc. 5(3) (2010) 593-598.
[134] R. Kumar, M. Chaudhari and S.K. Chakarvarti, Morphology and collective I-V characteristics of template synthesized nano metal-semiconductor heterojunctions, Mater. Letters 61 (2007) 1580-1582.
[135] M. Chaudhari, A. Vohra and S.K. Chakarvarti, Fabrication of Zn/Cd-Se micro heterostructures by electrochemical deposition in the pores of polycarbonate track-etch membranes and their characterization, Physica E 40 (2008) 849-851.
[136] M.T. Bjork, B.J. Ohlsson, C. Thelander, A.I. Persson, K. Deppert, L.R. Wallenberg and L. Samuelson, Nanowire resonant tunneling diodes, Appl. Phys. Lett. 81 (2002) 4458-4460.
DOI: 10.1063/1.1527995
[137] G.B. Ji, W. Chen, S.L. Tang, B.X. Gu, Z. Li and Y.W. Du, Fabrication and magnetic properties of ordered 20 nm Co-Pb nanowire arrays, Solid State Comm. 130 (2004) 541-545.
[138] Saedi and M. Ghorbani, Electrodeposition of Ni-Fe-Co alloy nanowire in modified AAO template, Mater. Chem. & Phys. 91 (2005) 417-423.
[139] L. Menon, Synthesis of Nanowires using Porous Alumina, in: Hari Singh Nalwa and S. Bandhopadhaya (Eds.), Quantum Dots and Nanowires, American Scientific Publishers, Cal. USA, 2003, pp.142-187.
[140] D.B. Cullity, Elements of X-ray Diffraction, Addison-Wesley Inc. Massachusetts, USA, 1956.
[141] H. Mehrez and H. Guo, Nanowires and Nanotubes--Materials, Properties and Devices, Vol. I: Metal and Semiconductor Nanowires, (Ed.) Z. L. Wang, Tsinghua University Press, Beijing, 2004, p.95–124.
[142] J.W.G. Wildoer, L.C. Venema, A.G. Rinzler, R.E. Smalley and C. Dekker, Electronic structure of atomically resolved Carbon nanotubes, Nature 391 (1998) 59-62.
DOI: 10.1038/34139
[143] K. Itakura, Y. Yuki, S. Kurokawa, H. Yasuda and A. Sakai, Bias dependence of the conductance of Au nanocontacts, Phys. Rev. B 60 (1999) 11163- 11170.
[144] S. Manna, S. Das, S.P. Mondal, R. Singha and S.K. Ray, High Efficiency Si/CdS Radial Nanowire Heterojunction Photodetectors Using Etched Si Nanowire Templates, J. Phys. Chem. C, 116 (12) (2012) 7126–7133.
DOI: 10.1021/jp210455w
[145] Y. Huang and C.M. Lieber, Integrated nanoscale electronics and optoelectronics: Exploring nanoscale science and technology through semiconductor nanowires, Pure Appl. Chem. 76(12) (2004) 2051– 2068.
[146] X. Duan and Y. Huang, Chemically Synthesized Semiconductor Nanowires for High-Performance Electronics and Optoelectronics, Chapter 2, in: Y. Sun and J.A. Rogers (Eds.), Semiconductor Nanomaterials for Flexible Technologies, Elsevier, UK, 2010, pp.27-62.
[147] W. Yang, Z. Wu, Z. Lu, X. Yang and L. Song, Template-electrodeposition preparation and Structural properties of CdS nanowire arrays, Microelect. Eng. 83 (2006) 1971–1974.
[148] D. Xu, Y. Xu, D. Chen, G. Guo, L. Gui and Y. Tang, Preparation and Characterization of CdS Nanowire Arrays by DC Electrodeposit in Porous Aluminum Oxide Templates, Chem. Phys. Letters, 325 (2000) 340-344.
[149] L. Sun, R.L. Zong, S.K. Shi and J. Zhou, Synthesis of Sulfide Nanowire Arrays through Template-Assisted Electrodeposition, Key Eng. Mater. 336–338 (2007) 2163–2165.
[150] C.M. Leiber and Z.L. Wang, Functional Nanowires, MRS Bull. 32 (2) (2007) 99-108.
[151] A.R. Rathmell, S. M. Bergin, Y. L. Hua, Z-Y. Li and B.J. Wiley, The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. Adv. Mater. 22 (2010) 3558- 3563.
[152] Y. Chang, M. L. Lye and H. C. Zeng, Large-scale synthesis of high-quality ultralong copper nanowires, Langmuir 21 (2005) 3746-3748.
DOI: 10.1021/la050220w
[153] T. Daff , I. Saadoune , I. Lisiecki and N. Leeuw, Computer simulations of the effect of atomic structure and coordination on the stabilities and melting behaviour of copper surfaces and nano-particles, Surf. Sci. 603 (2009) 445-454.
[154] M. I. Baskes, Modified Embedded-Atom Potentials for Cubic Materials and Impurities, Phys. Rev. B 46 (1992) 2727-2742.
[155] Galanakis, N. Papanikolaou and P.H. Dederichs, Applicability of the Broken- Bond Rule to the Surface Energy of the fcc Metals, Surf. Sci. 511 (2002) 1-12.
[156] J. Ahn, H. Kim, K. Lee, S. Jeon, S. Kang, Y. Sun, R. Nuzzo and J. Rogers, Heterogeneous Three Dimensional Electronics Using Printed Semiconductor Nanomaterials, Science 314 (2006) 1754-1757.
[157] C. O'Dwyer, M. Szachowicz, G. Visimberga, V. Lavayen, S. Newcomb, C. Torres, M. Sotomayor, Bottom-up growth of fully transparent contact layers of indium tin oxide nanowires for light-Emitting- devices, Nature Nanotech. 4 (2009) 239-244.
[158] R. G. Gordon, Criteria for Choosing Transparent Conductors, MRS Bull. 25-57(2000) 52-57.
DOI: 10.1557/mrs2000.151