Functional Nanomaterials: From Basic Science to Emerging Applications

Article Preview

Abstract:

Moores law predicts the reduction of the device elements size and the advancement of physics with time for the next generation microelectronic industries. Materials and devices sizes and enriched physics are strongly correlated phenomena. Everyday physics moves a step forward from microscale classical physics toward nanoscale quantum phenomenon. Similarly, the vast micro/nanoelectronics needs advancement in growth and characterization techniques and unexplored physics to cope with the 21st century market demands. The continuous size reduction of devices stimulates the researchers and technocrats to work on nanomaterials and devices for the next generation technology. The semiconductor industry is also facing the problem of size limitation and has followed Moores law which predicts 16 nm nodes for next generation microelectronic industries. Nanometer is known as the 10 times of an Angstrom unit, where it is common consensus among the scientists that any materials and devices having physical dimensions less than 1000 times of an Angstrom will come under the umbrella of Nanotechnology. This review article focuses on the fundamental aspects of nanoscale materials and devices: (i) definitions and different categories of nanomaterials, (ii) quantum scale physics and technology, (iii) self-assembed nanostructures, (iv) growth conditions and techniques of 0D, 1D, 2D, and 3D dimensional materials, (v) understanding of the multifunctionalities of the nanomaterials, (vi) nanoscale devices for low energy consumption and fast response, (vii) integration of nanoscale materials with Si-based systems, and (viii) major technical challenges.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 201)

Pages:

1-19

Citation:

Online since:

May 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[2] U. Muller, Nanostructures, in Inorganic Structural Chemistry, 2nd Edition, John Wiley & Sons, Ltd, Chichester (2007), p.241–245.

Google Scholar

[3] M. Kohler, and W. Fritzsche, Characterization of nanostructures, in Nanotechnology, 2nd edn, Wiley-VCH, Weinheim (2008), p.211–224.

Google Scholar

[4] W. Durr, M. Taborelli, O. Paul, R. Germar, W. Gudat, D. Pescia, and M. Landolt, Magnetic Phase Transition in Two-Dimensional Ultrathin Fe Films on Au(100), Phys. Rev. Lett. 62 (1989) 206-209.

DOI: 10.1103/physrevlett.62.206

Google Scholar

[5] M Farle, K Baberschke, Ferromagnetic order and the critical exponent γ for a Gd monolayer: An electron-spin-resonance study, Phys. Rev. Lett. 58 (1987) 511-514.

DOI: 10.1103/physrevlett.58.511

Google Scholar

[6] Mahmood Aliofkhazraei and Alireza Sabour Rouhaghdam, Fabrication of Nanostructures by Plasma Electrolysis, Copyright WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2010) ; ISBN: 978-3-527-32675-4.

DOI: 10.1002/9783527632459

Google Scholar

[7] Zhaoyu Wang, Jie Hu, and Min-Feng Yu, One-dimensional ferroelectric monodomain formation in single crystalline BaTiO3 nanowire, Appl. Phys. Lett. 89 (2006) 263119.

DOI: 10.1063/1.2425047

Google Scholar

[8] Sameh Tawfick ,Michael De Volder, Davor Copic, Sei Jin Park, C. Ryan Oliver, Erik S. Polsen, Megan J. Roberts, and A. John Hart, Engineering of Micro- and Nanostructured Surfaces with Anisotropic Geometries and Properties, Adv. Mater. 24, (2012)1628–1674.

DOI: 10.1002/adma.201103796

Google Scholar

[9] P. Kluson, M. Drobek, H. Bartkova, I. Budil, Welcome in the Nanoworld. Chem. Listy, 101(2007) 262-272.

Google Scholar

A. Ferancova, J. Labuda, DNA Biosensors based on nanostrucutred materials, In: A. Eftekhari (Ed.), Nanostrucutred Materials in Electrochemistry, Wiley-VCH: Weinheim, Germany, 2008, pp.409-434.

Google Scholar

[1] V. Kral, J. Sotola, P. Neuwirth, Z. Kejik, K. Zaruba, P. Martasek, Nanomedicine – Current status and perspectives: A big potential or just a catchword? Chem. Listy 100 (2006) 4-9.

Google Scholar

[2] P. Matagne, J.-P. Leburton, Quantum Dots: Artificial Atoms and Molecules. In: H. S. Nalwa, & S. Bandyopadhyay (Eds.), Quantum Dots and Nanowires, American Scientific Publishers, Stevenson Ranch, California, (2003), pp.2-66.

Google Scholar

[3] D. Gerion, Fluorescence imaging in biology using nanoprobes, In: C.S.S.R. Kumar (Ed.), Nanosystem Characterization Tools in the Life Sciences, 1st Ed., Wiley-VCH: Weinheim, Germany, 2006, Volume 3, pp.1-37.

Google Scholar

[4] K. E. Sapsford, T. Pons, I. L. Medintz, H. Mattoussi, Biosensing with luminescent semiconductor quantum dots, Sensors 6 (2006) 925-953.

DOI: 10.3390/s6080925

Google Scholar

[5] T. Liedl, H. Dietz, B. Yurke, F. Simmel, Controlled trapping and release of quantum dots in a DNA-Switchable hydrogel, Small 3 (2007) 1688-1690.

DOI: 10.1002/smll.200700366

Google Scholar

[6] E. R. Goldman, I. L. Medintz, H. Mattoussi, Luminescent quantum dots in immunoassays, Anal. Bioanal. Chem. 384, (2006) 560-563.

DOI: 10.1007/s00216-005-0212-5

Google Scholar

[7] Mildred S. Dresselhaus, Gang Chen, Ming Y. Tang, Ronggui Yang, Hohyun Lee, Dezhi Wang, Zhifeng Ren, Jean-Pierre Fleurial, and Pawan Gogna, New Directions for Low-Dimensional Thermoelectric Materials, Adv. Mater., 19 (2007) 1043–1053.

DOI: 10.1109/ict.2005.1519940

Google Scholar

[8] Yury V. Kolen'ko, Kirill A. Kovnir, Ine´s S. Neira, Takaaki Taniguchi, Tadashi Ishigaki,Tomoaki Watanabe, Naonori Sakamoto, and Masahiro Yoshimura, A Novel, Controlled, and High-Yield Solvothermal Drying Route to Nanosized Barium Titanate Powders, J. Phys. Chem. C, 111 (2007) 7306-7318.

DOI: 10.1021/jp0678103

Google Scholar

[9] L. Spanhel and M. A. Anderson, Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids, J. Am. Chem. Soc. 113, (1991) 2826.

DOI: 10.1021/ja00008a004

Google Scholar

[20] Harish Kumar Yadav, Vinay Gupta, K. Sreenivas, S. P. Singh, B. Sundarakannan, and R. S. Katiyar Low frequency Raman scattering from acoustic phonons confined in ZnO nanoparticles, Physics Rev. Lett. 97 (2006) 085502.

DOI: 10.1103/physrevlett.98.029902

Google Scholar

[2] S. Goswami, D. Bhattacharya, P. Choudhury, B. Ouladdiaf, and T. Chatterji, Multiferroic coupling in nanoscale BiFeO3, Appl. Phys. Lett. 99, (2011) 073106.

DOI: 10.1063/1.3625924

Google Scholar

[22] Ashok Kumar, J. F. Scott and R. S. Katiyar, Novel room temperature magnetoelectric Multiferroics for Random Access Memory Elements, IEEE Transactions Ultrasonics, Ferroelectrics, and Frequency Control, 57 (2010) 2237.

DOI: 10.1109/tuffc.2010.1684

Google Scholar

[23] New Recipe of memory devices, Nature India, Research highlight, Ashok kumar DOI: 10.1038/nindia.2012.64, (2012).

Google Scholar

[24] Seu Yi Li, Chia Ying Lee, Tseung Yuen Tseng, Copper-catalyzed ZnO nanowires on silicon (1 0 0) grown by vapor–liquid–solid process, Journal of Crystal growth, 247 (2011) 357-362.

DOI: 10.1016/s0022-0248(02)01918-8

Google Scholar

[25] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. One-Dimensional Nanostructures: Synthesis, Characterization, and Applications, 15 (2003) 353-389.

DOI: 10.1002/adma.200390087

Google Scholar

[26] C. N. R. Rao, F. L. Deepak, G. Gundiah, A. Govindaraj, Inorganic nanowires, Prog. Solid State Chem. 31(2003) 5-147.

DOI: 10.1016/j.progsolidstchem.2003.08.001

Google Scholar

[27] C. S. Ganpule, A. Stanishevsky, Q. Su, S. Aggarwal, J. Melngailis, E. Williams, R. Ramesh, Scaling of ferroelectric properties in thin films, Appl. Phys. Lett. 75 (1999) 409.

DOI: 10.1063/1.124391

Google Scholar

[28] V. Nagarajan, A. Roytburd, A. Stanishevsky, S. Prasertchoung, T. Zhao, L. Chen, J. Melngailis, O. Auciello, R. Ramesh, Dynamics of ferroelastic domains in ferroelectric thin films, Nat. Mater., 2 (2003) 43-47.

DOI: 10.1038/nmat800

Google Scholar

[29] A. Schilling, D. Byrne, G. Catalan, K. G. Webber, Y. A. Genenko, G. S. Wu, J. F. Scott, J. M. Gregg, Domains in Ferroelectric Nanodots, Nano Lett., 9 (2009) 3359-3364.

DOI: 10.1021/nl901661a

Google Scholar

[30] M. Alexe, C. Harnagea, D. Hesse, U. Gösele, Polarization imprint and size effects in mesoscopic ferroelectric structures, Appl. Phys. Lett. 79 (2001) 242-245.

DOI: 10.1063/1.1385184

Google Scholar

[3] M. Alexe, C. Harnagea, D. Hesse, U. Gösele, Patterning and switching of nanosize ferroelectric memory cells, Appl. Phys. Lett. 75 (1999) 1793-1796.

DOI: 10.1063/1.124822

Google Scholar

[32] D Pantel, S Goetze, D Hesse, M Alexe, Room-Temperature Ferroelectric Resistive Switching in Ultrathin Pb(Zr(0.2)Ti(0.8))O(3) Films, ACS Nano 5 (2011) 6032-6038.

DOI: 10.1021/nn2018528

Google Scholar

[33] W. Lee, H. Han, A. Lotnyk, M.A. Schubert, S. Senz, M. Alexe, D. Hesse, S. Baik, and U. Gösele Individually addressable epitaxial ferroelectric nanocapacitor arrays with near Tb inch-2 density, Nature Nanotechnology 3 (2008) 402-407.

DOI: 10.1038/nnano.2008.161

Google Scholar

[34] Stephen S. Nonnenmann , Mohammad A. Islam , Brian R. Beatty , Eric M. Gallo , Terrence McGuckin , and Jonathan E. Spanier, The Ferroelectric Field Effect within an Integrated Core/Shell Nanowire, Adv. Funct. Mater. 22 (2012) 4957-4961.

DOI: 10.1002/adfm.201200865

Google Scholar

[35] Ferroelectrics at Nanoscale: Scanning Probe Microscopy Approach, edited by M. Alexe and A. Gruverman (Springer, 2004).

Google Scholar

[36] Scanning Probe Microscopy of Electrical and Electromechanical Phenomena at the Nanoscale, edited by S.V. Kalinin and A.Gruverman (Springer, 2006).

DOI: 10.1007/978-0-387-28668-6

Google Scholar

[37] Per Martin Rørvik, Tor Grande, and Mari-Ann Einarsrud, One-Dimensional Nanostructures of Ferroelectric Perovskites, Adv. Mater. 23 (2011) 4007-4034.

DOI: 10.1002/adma.201004676

Google Scholar

[38] Hee Han, Yunseok Kim , Marin Alexe , Dietrich Hesse , and Woo Lee, Nanostructured Ferroelectrics: Fabrication and Structure–Property Relations, Adv. Mater. 23 (2011) 4599–4613.

DOI: 10.1002/adma.201102249

Google Scholar

[39] Stephen Mann, Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions, Nature Materials 8 (2009) 781-792.

DOI: 10.1038/nmat2496

Google Scholar

[40] Dominik Eder, Carbon Nanotube-Inorganic Hybrids, Chem. Rev. 110 (2010)1348–1385.

Google Scholar

[41] L M Blinov, V M Fridkin, S P Palto, A V Bune, P A Dowben, S Ducharme, Two-Dimensional Ferroelectrics, Physics-Uspekhi 43 (3) (2000) 243-257.

DOI: 10.1070/pu2000v043n03abeh000639

Google Scholar

[42] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.

DOI: 10.1038/354056a0

Google Scholar

[43] J. E. Jang, S. N. Cha, Y. J. Choi, D. J. Kang, T. P. Butler, D. G. Hasko, J. E. Jung, J. M. Kim, G. A. Amaratunga, Nanoscale memory cell based on a nanoelectromechanical switched capacitor, Nature Nano 3 (2008) 26-30.

DOI: 10.1038/nnano.2007.417

Google Scholar

[44] H. Deckman, J. Dunsmuir, Natural Lithography, Appl. Phys. Lett. 41 (1982) 377.

Google Scholar

[45] J. C. Hulteen, R. P. Van Duyne, Nanosphere Lithography – A Materials General Fabrication Process for Periodic Particle Array Surfaces., J. Vac. Sci. Technol. A, 13 (1995) 1553.

DOI: 10.1116/1.579726

Google Scholar

[46] L. Li, T. Zhai, H. Zeng, X. Fang, Y. Bando, D. Golberg, Polystyrene Sphere-Assisted One-Dimensional Nanostructure Arrays: Synthesis and Applications. J. Mater. Chem. 21, (2011) 40-56.

DOI: 10.1039/c0jm02230f

Google Scholar

[47] W. Ma, C. Harnagea, D. Hesse, U. Goesele, Well-Ordered Arrays of Pyramid-Shaped Ferroelectric BaTiO3 Nanostructures. Appl. Phys. Lett. 83 (2003) 3770-3772.

DOI: 10.1063/1.1625106

Google Scholar

[48] M. Winzer, M. Kleiber, N. Dix, R. Wiesendanger, Fabrication of Nanodot- and Nanoring-arrays by Nanosphere Lithography. Appl. Phys. A: Mater. Sci. Process 63, (1996) 617.

DOI: 10.1007/bf01567218

Google Scholar

[49] A. Kumar, G. L. Sharma, R. S. Katiyar, J. F. Scott, R. Pirc and R. Blinc, Magnetic control of large room-temperature polarization, J. Phys. Condens. Matter 21 (2009) 382204 (7pp).

DOI: 10.1088/0953-8984/21/38/382204

Google Scholar

[50] T. J. Trentler , K. M. Hickman , S. C. Goel , A. M. Viano , P. C. Gibbons , W. E. Buhro, Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth, Science 270 (1995) 1791-1794.

DOI: 10.1126/science.270.5243.1791

Google Scholar

[5] A. C. Santulli , M. Feygenson , F. E. Camino , M. C. Aronson , S. S. Wong, Synthesis and Characterization of One-Dimensional Cr2O3 Nanostructures, Chem. Mater. 23 (2011) 1000-1008.

DOI: 10.1021/cm102930z

Google Scholar

[52] P. A. Sedach , T. J. Gordon , S. Y. Sayed , T. Furstenhaupt, R. H. Sui , T. Baumgartner , C. P. Berlinguette, Solution growth of anatase TiO2 nanowires from transparent conducting glass substrates, J. Mater. Chem. 20 (2010) 5063 – 5069.

DOI: 10.1039/c0jm00266f

Google Scholar

[53] R. S. Devan, R. A. Patil, J. H. Lin, Y. R. Ma, One-Dimensional Metal-Oxide Nanostructures: Recent Developments in Synthesis, Characterization, and Applications, Adv. Funct. Mater. 22 (2012) 3326–3370.

DOI: 10.1002/adfm.201201008

Google Scholar

[54] R. S. Wanger, W. C. Ellis, Vapor-Liquid-Solid mechanism of single crystal growth, Appl. Phys. Lett. 4 (1964) 89-90.

DOI: 10.1063/1.1753975

Google Scholar

[55] B. Wang, Y. H. Yang, N. S. Xu, G. W. Yang, Mechanisms of size-dependent shape evolution of one-dimensional nanostructure growth, Phys. Rev. B 74 (2006) 235305.

DOI: 10.1103/physrevb.74.235305

Google Scholar

[56] Z. Fan, D. Wang, P. Chang, W. Tseng, J. G. Lu, ZnO nanowire field-effect transistor and oxygen sensing property, Appl. Phys. Lett. 85 (2004) 5923-5925.

DOI: 10.1063/1.1836870

Google Scholar

[57] R. Thomas, D. C. Dube, M. N. Kamalasanan, S. Chandra, Optical and electrical properties of BaTiO3 thin films prepared by chemical solution deposition, Thin Solid Films 346, (1999) 212-225.

DOI: 10.1016/s0040-6090(98)01772-6

Google Scholar

[58] S. B. Majumder, S. Bhaskar, R. S. Katiyar, Critical issues in Sol-gel Derived Ferroelectric thin films, Integrated Ferroelectrics 42 (2002) 245-292.

DOI: 10.1080/10584580210841

Google Scholar

[59] MOCVD Basics and Applications, Samsung Advanced Institute of Technology, 2004.

Google Scholar

[60] R. Thomas, R. Bhakta, A.Milanov, U.Patil, A. Devi, P. Ehrhart, Thin films of ZrO2 for high-k applications from engineered alkoxide and amide based MOCVD precursors, Chemical Vapor Deposition 13 (2007) 98-104.

DOI: 10.1002/cvde.200606512

Google Scholar

[6] M. Dawber, K. M. Rabe, J. F. Scott, Physics of thin-film ferroelectric oxides, Rev. Mod. Phys. 77 (2005) 1083-1130.

DOI: 10.1103/revmodphys.77.1083

Google Scholar

[62] A. Kumar, R. S. Katiyar, J. F. Scott, Magnon Raman spectroscopy and in-plane dielectric response in BiFeO3:Relation to the Polomska transition, Phy. Rev. B 85 (2012) 224410-224414.

DOI: 10.1103/physrevb.85.224410

Google Scholar

[63] R.Thomas, S. Mochizuki, T. Mihara, T.Ishida, Preparation of Pb(Zr,Ti)O3 thin films on platinized glass substrates by RF-magnetron sputtering with Stoichiometric single oxide target: Structural, microstructural and ferroelectric properties, Thin Soild Films 413, (2002) 65-75.

DOI: 10.1016/s0040-6090(02)00354-1

Google Scholar

[64] L. F. Edge, D.G. Schlom, R. M. W. P. Sivasubramani, B. Holländer, and J. Schubert, Electrical Characterization of Amorphous Lanthanum Aluminate Thin Films Grown by Molecular Beam Deposition on Silicon, Appl. Phys. Lett. 88 (2006) 112907.

DOI: 10.1063/1.2182019

Google Scholar

[65] Steven M. George "Atomic Layer Deposition: An Overview". Chem. Rev. 110(1) (2010) 111-131.

Google Scholar

[66] K. S. Takahashi, M. Kawasaki, Y. Tokura, Interface ferromagnetism in oxide superlattices of CaMnO3/CaRuO3. Appl. Phys. Lett. 79 (2001) 1324–1326.

DOI: 10.1063/1.1398331

Google Scholar

[67] P. A. Salvador, A-M. Haghiri-Gosnet, B. Mercey, M. Hervieu, B. Raveau, Growth and magnetoresistive properties of (LaMnO3)m(SrMnO3)n superlattices, Appl. Phys. Lett. 75 (1999) 2638–2640.

DOI: 10.1063/1.125103

Google Scholar

[68] H. Yamada, M. Kawasaki, T. Lottermoser, T. Arima, Y. Tokura, LaMnO3/SrMnO3 interfaces with coupled charge-spin-orbital modulation, Appl. Phys. Lett. 80 (2006) 52506-52508.

DOI: 10.1063/1.2266863

Google Scholar

[69] A. Ohtomo and H. Y. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 hetero- interface. Nature 427 (2004) 423–426.

DOI: 10.1038/nature02308

Google Scholar

[70] S. S. A. Seo, M. J. Han, G. W. J. Hassink, W. S. Choi, S. J. Moon, J. S. Kim, T. Susaki, Y. S. Lee, J. Yu, C. Bernhard, H. Y. Hwang, G. Rijnders, D. H. A. Blank, B. Keimer, and T. W. Noh, Two-dimensional confinement of 3d1 electrons in LaTiO3-LaAlO3 multilayers, Phys. Rev. Lett. 104 (2010) 036401(4pp.).

DOI: 10.1103/physrevlett.104.036401

Google Scholar

[7] N. Kida, H. Yamada, H. Sato, T. Arima, M. Kawasaki, H. Akoh, and Y. Tokura, Optical magnetoelectric effect of patterned oxide superlattices with ferromagnetic interfaces, Phys. Rev. Lett. 99 (2007) 197404 (4p.).

DOI: 10.1103/physrevlett.99.197404

Google Scholar

[72] Julie A. Bert, Beena Kalisky, Christopher Bell, Minu Kim, Yasuyuki Hikita, Harold Y. Hwang & Kathryn A. Moler, Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface, Nature Phys. 7 (2011) 767–771.

DOI: 10.1038/nphys2079

Google Scholar

[73] A. Tsukazaki, A. Ohtomo, T. Kita, Y. Ohno, H. Ohno, M. Kawasaki, Quantum Hall effect in polar oxide heterostructures, Science 315, (2007) 1388–1391.

DOI: 10.1126/science.1137430

Google Scholar

[74] A. Tsukazaki, S. Akasaka, K. Nakahara, Y. Ohno, H. Ohno, D. Maryenko, A. Ohtomo & M. Kawasaki, Observation of the fractional quantum Hall effect in an oxide. Nature Mater. 9 (2010) 889–893.

DOI: 10.1038/nmat2874

Google Scholar

[75] Y. Kozuka, A. Tsukazaki, D. Maryenko, J. Falson, S. Akasaka, K. Nakahara, S. Nakamura, S. Awaji, K. Ueno, and M. Kawasaki, Insulating phase of a two-dimensional electron gas in MgxZn1-xO/ZnO heterostructures below ν = 1/3, Phys. Rev. B 84 (2011) 033304.

DOI: 10.1103/physrevb.84.033304

Google Scholar

[76] H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa and Y. Tokura, Emergent phenomena at oxide interfaces, Nature Mater. 11 (2012) 103.

DOI: 10.1038/nmat3223

Google Scholar

[77] N. Ortega, A. Kumar, O. A. Maslova, Yu. I. Yuzyuk, J. F. Scott, and R. S. Katiyar, Effect of periodicity and composition in artificial BaTiO3/(Ba,Sr)TiO3 superlattices, Phys. Rev. B 83 (2011) 144108.

DOI: 10.1590/1980-5373-mr-2018-0389

Google Scholar

[78] A. Scalabrin, A.S. Chaves, D.S. Shim, and S.P.S. Porto, Temperature dependence of the A1 and E optical phonons in BaTiO3, Phys. Status Solidi B 79 (1977) 731.

DOI: 10.1002/pssb.2220790240

Google Scholar

[79] D.G. Schlom, L.-Q. Chen, C.-B. Eom, K.M. Rabe, S.K. Streiffer, J.-M. Triscone, Strain Tuning of Ferroelectric Thin Films, Ann. Rev. Mater. Res. 37 (2007) 589–626.

DOI: 10.1146/annurev.matsci.37.061206.113016

Google Scholar

[80] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures, Science 299 (2003)1719–1722.

DOI: 10.1126/science.1080615

Google Scholar

[8] R. Ramesh, N. A. Spaldin, Multiferroics: Progress and Prospects in Thin Films, Nature Mater. 6 (2007) 21−29.

DOI: 10.1038/nmat1805

Google Scholar

[82] N. A. Hill, Why Are There So Few Magnetic Ferroelectrics? J. Phys. Chem. B 104 (2000) 29.

Google Scholar

[83] http://www.ferroic.mat.ethz.ch/research/projects_general/project_6

Google Scholar

[84] J.H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y.L. Li, S. Choudhury, W. Tian, M.E. Hawley, B. Craigo, A.K. Tagantsev, X.Q. Pan, S.K. Streiffer, L.Q. Chen, S.W. Kirchoefer, J. Levy, D.G. Schlom, Room-temperature ferroelectricity in strained SrTiO3, Nature 430 (2004) 758–761.

DOI: 10.1038/nature02773

Google Scholar

[85] S.K. Streiffer, J.A. Eastman, D.D. Fong, C. Thompson, A. Munkholm, M.V. Ramana Murty, O. Auciello, G.R. Bai, G.B. Stephenson, Observation of Nanoscale 180° Stripe Domains in Ferroelectric PbTiO3 Thin Films, Phys. Rev. Lett. 89 (2002) 067601.

DOI: 10.1103/physrevlett.89.067601

Google Scholar

[86] E. Bousquet, N. A. Spaldin, P. Ghosez, Strain-Induced Ferroelectricity in Simple Rocksalt Binary Oxides, Phys. Rev. Lett. 104 (2010) 037601.

DOI: 10.1103/physrevlett.104.037601

Google Scholar

[87] J. H. Lee and K. M. Rabe, Epitaxial-Strain-Induced Multiferroicity in SrMnO3 from First Principles, Phys. Rev. Lett. 104 (2010) 207204.

Google Scholar

[88] H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamancaiba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh, Multiferroic BaTiO3-CoFe2O4 Nanostructures, Science 303 (2004) 661.

DOI: 10.1126/science.1094207

Google Scholar

[89] Mirza Bichurin, V. Petrov, A. Zakharov , D. Kovalenko , S. C. Yang , D. Maurya , V. Bedekar and S. Priya, Magnetoelectric Interactions in Lead-Based and Lead-Free Composites, Materials, 4 (2011) 651-702

DOI: 10.3390/ma4040651

Google Scholar

[90] François Léonard and A. Alec Talin, Electrical contacts to one- and two-dimensional nanomaterials, Nature Nanotechnology 6 (2011) 773-783

DOI: 10.1038/nnano.2011.196

Google Scholar