[2]
U. Muller, Nanostructures, in Inorganic Structural Chemistry, 2nd Edition, John Wiley & Sons, Ltd, Chichester (2007), p.241–245.
Google Scholar
[3]
M. Kohler, and W. Fritzsche, Characterization of nanostructures, in Nanotechnology, 2nd edn, Wiley-VCH, Weinheim (2008), p.211–224.
Google Scholar
[4]
W. Durr, M. Taborelli, O. Paul, R. Germar, W. Gudat, D. Pescia, and M. Landolt, Magnetic Phase Transition in Two-Dimensional Ultrathin Fe Films on Au(100), Phys. Rev. Lett. 62 (1989) 206-209.
DOI: 10.1103/physrevlett.62.206
Google Scholar
[5]
M Farle, K Baberschke, Ferromagnetic order and the critical exponent γ for a Gd monolayer: An electron-spin-resonance study, Phys. Rev. Lett. 58 (1987) 511-514.
DOI: 10.1103/physrevlett.58.511
Google Scholar
[6]
Mahmood Aliofkhazraei and Alireza Sabour Rouhaghdam, Fabrication of Nanostructures by Plasma Electrolysis, Copyright WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2010) ; ISBN: 978-3-527-32675-4.
DOI: 10.1002/9783527632459
Google Scholar
[7]
Zhaoyu Wang, Jie Hu, and Min-Feng Yu, One-dimensional ferroelectric monodomain formation in single crystalline BaTiO3 nanowire, Appl. Phys. Lett. 89 (2006) 263119.
DOI: 10.1063/1.2425047
Google Scholar
[8]
Sameh Tawfick ,Michael De Volder, Davor Copic, Sei Jin Park, C. Ryan Oliver, Erik S. Polsen, Megan J. Roberts, and A. John Hart, Engineering of Micro- and Nanostructured Surfaces with Anisotropic Geometries and Properties, Adv. Mater. 24, (2012)1628–1674.
DOI: 10.1002/adma.201103796
Google Scholar
[9]
P. Kluson, M. Drobek, H. Bartkova, I. Budil, Welcome in the Nanoworld. Chem. Listy, 101(2007) 262-272.
Google Scholar
A. Ferancova, J. Labuda, DNA Biosensors based on nanostrucutred materials, In: A. Eftekhari (Ed.), Nanostrucutred Materials in Electrochemistry, Wiley-VCH: Weinheim, Germany, 2008, pp.409-434.
Google Scholar
[1]
V. Kral, J. Sotola, P. Neuwirth, Z. Kejik, K. Zaruba, P. Martasek, Nanomedicine – Current status and perspectives: A big potential or just a catchword? Chem. Listy 100 (2006) 4-9.
Google Scholar
[2]
P. Matagne, J.-P. Leburton, Quantum Dots: Artificial Atoms and Molecules. In: H. S. Nalwa, & S. Bandyopadhyay (Eds.), Quantum Dots and Nanowires, American Scientific Publishers, Stevenson Ranch, California, (2003), pp.2-66.
Google Scholar
[3]
D. Gerion, Fluorescence imaging in biology using nanoprobes, In: C.S.S.R. Kumar (Ed.), Nanosystem Characterization Tools in the Life Sciences, 1st Ed., Wiley-VCH: Weinheim, Germany, 2006, Volume 3, pp.1-37.
Google Scholar
[4]
K. E. Sapsford, T. Pons, I. L. Medintz, H. Mattoussi, Biosensing with luminescent semiconductor quantum dots, Sensors 6 (2006) 925-953.
DOI: 10.3390/s6080925
Google Scholar
[5]
T. Liedl, H. Dietz, B. Yurke, F. Simmel, Controlled trapping and release of quantum dots in a DNA-Switchable hydrogel, Small 3 (2007) 1688-1690.
DOI: 10.1002/smll.200700366
Google Scholar
[6]
E. R. Goldman, I. L. Medintz, H. Mattoussi, Luminescent quantum dots in immunoassays, Anal. Bioanal. Chem. 384, (2006) 560-563.
DOI: 10.1007/s00216-005-0212-5
Google Scholar
[7]
Mildred S. Dresselhaus, Gang Chen, Ming Y. Tang, Ronggui Yang, Hohyun Lee, Dezhi Wang, Zhifeng Ren, Jean-Pierre Fleurial, and Pawan Gogna, New Directions for Low-Dimensional Thermoelectric Materials, Adv. Mater., 19 (2007) 1043–1053.
DOI: 10.1109/ict.2005.1519940
Google Scholar
[8]
Yury V. Kolen'ko, Kirill A. Kovnir, Ine´s S. Neira, Takaaki Taniguchi, Tadashi Ishigaki,Tomoaki Watanabe, Naonori Sakamoto, and Masahiro Yoshimura, A Novel, Controlled, and High-Yield Solvothermal Drying Route to Nanosized Barium Titanate Powders, J. Phys. Chem. C, 111 (2007) 7306-7318.
DOI: 10.1021/jp0678103
Google Scholar
[9]
L. Spanhel and M. A. Anderson, Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids, J. Am. Chem. Soc. 113, (1991) 2826.
DOI: 10.1021/ja00008a004
Google Scholar
[20]
Harish Kumar Yadav, Vinay Gupta, K. Sreenivas, S. P. Singh, B. Sundarakannan, and R. S. Katiyar Low frequency Raman scattering from acoustic phonons confined in ZnO nanoparticles, Physics Rev. Lett. 97 (2006) 085502.
DOI: 10.1103/physrevlett.98.029902
Google Scholar
[2]
S. Goswami, D. Bhattacharya, P. Choudhury, B. Ouladdiaf, and T. Chatterji, Multiferroic coupling in nanoscale BiFeO3, Appl. Phys. Lett. 99, (2011) 073106.
DOI: 10.1063/1.3625924
Google Scholar
[22]
Ashok Kumar, J. F. Scott and R. S. Katiyar, Novel room temperature magnetoelectric Multiferroics for Random Access Memory Elements, IEEE Transactions Ultrasonics, Ferroelectrics, and Frequency Control, 57 (2010) 2237.
DOI: 10.1109/tuffc.2010.1684
Google Scholar
[23]
New Recipe of memory devices, Nature India, Research highlight, Ashok kumar DOI: 10.1038/nindia.2012.64, (2012).
Google Scholar
[24]
Seu Yi Li, Chia Ying Lee, Tseung Yuen Tseng, Copper-catalyzed ZnO nanowires on silicon (1 0 0) grown by vapor–liquid–solid process, Journal of Crystal growth, 247 (2011) 357-362.
DOI: 10.1016/s0022-0248(02)01918-8
Google Scholar
[25]
Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. One-Dimensional Nanostructures: Synthesis, Characterization, and Applications, 15 (2003) 353-389.
DOI: 10.1002/adma.200390087
Google Scholar
[26]
C. N. R. Rao, F. L. Deepak, G. Gundiah, A. Govindaraj, Inorganic nanowires, Prog. Solid State Chem. 31(2003) 5-147.
DOI: 10.1016/j.progsolidstchem.2003.08.001
Google Scholar
[27]
C. S. Ganpule, A. Stanishevsky, Q. Su, S. Aggarwal, J. Melngailis, E. Williams, R. Ramesh, Scaling of ferroelectric properties in thin films, Appl. Phys. Lett. 75 (1999) 409.
DOI: 10.1063/1.124391
Google Scholar
[28]
V. Nagarajan, A. Roytburd, A. Stanishevsky, S. Prasertchoung, T. Zhao, L. Chen, J. Melngailis, O. Auciello, R. Ramesh, Dynamics of ferroelastic domains in ferroelectric thin films, Nat. Mater., 2 (2003) 43-47.
DOI: 10.1038/nmat800
Google Scholar
[29]
A. Schilling, D. Byrne, G. Catalan, K. G. Webber, Y. A. Genenko, G. S. Wu, J. F. Scott, J. M. Gregg, Domains in Ferroelectric Nanodots, Nano Lett., 9 (2009) 3359-3364.
DOI: 10.1021/nl901661a
Google Scholar
[30]
M. Alexe, C. Harnagea, D. Hesse, U. Gösele, Polarization imprint and size effects in mesoscopic ferroelectric structures, Appl. Phys. Lett. 79 (2001) 242-245.
DOI: 10.1063/1.1385184
Google Scholar
[3]
M. Alexe, C. Harnagea, D. Hesse, U. Gösele, Patterning and switching of nanosize ferroelectric memory cells, Appl. Phys. Lett. 75 (1999) 1793-1796.
DOI: 10.1063/1.124822
Google Scholar
[32]
D Pantel, S Goetze, D Hesse, M Alexe, Room-Temperature Ferroelectric Resistive Switching in Ultrathin Pb(Zr(0.2)Ti(0.8))O(3) Films, ACS Nano 5 (2011) 6032-6038.
DOI: 10.1021/nn2018528
Google Scholar
[33]
W. Lee, H. Han, A. Lotnyk, M.A. Schubert, S. Senz, M. Alexe, D. Hesse, S. Baik, and U. Gösele Individually addressable epitaxial ferroelectric nanocapacitor arrays with near Tb inch-2 density, Nature Nanotechnology 3 (2008) 402-407.
DOI: 10.1038/nnano.2008.161
Google Scholar
[34]
Stephen S. Nonnenmann , Mohammad A. Islam , Brian R. Beatty , Eric M. Gallo , Terrence McGuckin , and Jonathan E. Spanier, The Ferroelectric Field Effect within an Integrated Core/Shell Nanowire, Adv. Funct. Mater. 22 (2012) 4957-4961.
DOI: 10.1002/adfm.201200865
Google Scholar
[35]
Ferroelectrics at Nanoscale: Scanning Probe Microscopy Approach, edited by M. Alexe and A. Gruverman (Springer, 2004).
Google Scholar
[36]
Scanning Probe Microscopy of Electrical and Electromechanical Phenomena at the Nanoscale, edited by S.V. Kalinin and A.Gruverman (Springer, 2006).
DOI: 10.1007/978-0-387-28668-6
Google Scholar
[37]
Per Martin Rørvik, Tor Grande, and Mari-Ann Einarsrud, One-Dimensional Nanostructures of Ferroelectric Perovskites, Adv. Mater. 23 (2011) 4007-4034.
DOI: 10.1002/adma.201004676
Google Scholar
[38]
Hee Han, Yunseok Kim , Marin Alexe , Dietrich Hesse , and Woo Lee, Nanostructured Ferroelectrics: Fabrication and Structure–Property Relations, Adv. Mater. 23 (2011) 4599–4613.
DOI: 10.1002/adma.201102249
Google Scholar
[39]
Stephen Mann, Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions, Nature Materials 8 (2009) 781-792.
DOI: 10.1038/nmat2496
Google Scholar
[40]
Dominik Eder, Carbon Nanotube-Inorganic Hybrids, Chem. Rev. 110 (2010)1348–1385.
Google Scholar
[41]
L M Blinov, V M Fridkin, S P Palto, A V Bune, P A Dowben, S Ducharme, Two-Dimensional Ferroelectrics, Physics-Uspekhi 43 (3) (2000) 243-257.
DOI: 10.1070/pu2000v043n03abeh000639
Google Scholar
[42]
S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.
DOI: 10.1038/354056a0
Google Scholar
[43]
J. E. Jang, S. N. Cha, Y. J. Choi, D. J. Kang, T. P. Butler, D. G. Hasko, J. E. Jung, J. M. Kim, G. A. Amaratunga, Nanoscale memory cell based on a nanoelectromechanical switched capacitor, Nature Nano 3 (2008) 26-30.
DOI: 10.1038/nnano.2007.417
Google Scholar
[44]
H. Deckman, J. Dunsmuir, Natural Lithography, Appl. Phys. Lett. 41 (1982) 377.
Google Scholar
[45]
J. C. Hulteen, R. P. Van Duyne, Nanosphere Lithography – A Materials General Fabrication Process for Periodic Particle Array Surfaces., J. Vac. Sci. Technol. A, 13 (1995) 1553.
DOI: 10.1116/1.579726
Google Scholar
[46]
L. Li, T. Zhai, H. Zeng, X. Fang, Y. Bando, D. Golberg, Polystyrene Sphere-Assisted One-Dimensional Nanostructure Arrays: Synthesis and Applications. J. Mater. Chem. 21, (2011) 40-56.
DOI: 10.1039/c0jm02230f
Google Scholar
[47]
W. Ma, C. Harnagea, D. Hesse, U. Goesele, Well-Ordered Arrays of Pyramid-Shaped Ferroelectric BaTiO3 Nanostructures. Appl. Phys. Lett. 83 (2003) 3770-3772.
DOI: 10.1063/1.1625106
Google Scholar
[48]
M. Winzer, M. Kleiber, N. Dix, R. Wiesendanger, Fabrication of Nanodot- and Nanoring-arrays by Nanosphere Lithography. Appl. Phys. A: Mater. Sci. Process 63, (1996) 617.
DOI: 10.1007/bf01567218
Google Scholar
[49]
A. Kumar, G. L. Sharma, R. S. Katiyar, J. F. Scott, R. Pirc and R. Blinc, Magnetic control of large room-temperature polarization, J. Phys. Condens. Matter 21 (2009) 382204 (7pp).
DOI: 10.1088/0953-8984/21/38/382204
Google Scholar
[50]
T. J. Trentler , K. M. Hickman , S. C. Goel , A. M. Viano , P. C. Gibbons , W. E. Buhro, Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth, Science 270 (1995) 1791-1794.
DOI: 10.1126/science.270.5243.1791
Google Scholar
[5]
A. C. Santulli , M. Feygenson , F. E. Camino , M. C. Aronson , S. S. Wong, Synthesis and Characterization of One-Dimensional Cr2O3 Nanostructures, Chem. Mater. 23 (2011) 1000-1008.
DOI: 10.1021/cm102930z
Google Scholar
[52]
P. A. Sedach , T. J. Gordon , S. Y. Sayed , T. Furstenhaupt, R. H. Sui , T. Baumgartner , C. P. Berlinguette, Solution growth of anatase TiO2 nanowires from transparent conducting glass substrates, J. Mater. Chem. 20 (2010) 5063 – 5069.
DOI: 10.1039/c0jm00266f
Google Scholar
[53]
R. S. Devan, R. A. Patil, J. H. Lin, Y. R. Ma, One-Dimensional Metal-Oxide Nanostructures: Recent Developments in Synthesis, Characterization, and Applications, Adv. Funct. Mater. 22 (2012) 3326–3370.
DOI: 10.1002/adfm.201201008
Google Scholar
[54]
R. S. Wanger, W. C. Ellis, Vapor-Liquid-Solid mechanism of single crystal growth, Appl. Phys. Lett. 4 (1964) 89-90.
DOI: 10.1063/1.1753975
Google Scholar
[55]
B. Wang, Y. H. Yang, N. S. Xu, G. W. Yang, Mechanisms of size-dependent shape evolution of one-dimensional nanostructure growth, Phys. Rev. B 74 (2006) 235305.
DOI: 10.1103/physrevb.74.235305
Google Scholar
[56]
Z. Fan, D. Wang, P. Chang, W. Tseng, J. G. Lu, ZnO nanowire field-effect transistor and oxygen sensing property, Appl. Phys. Lett. 85 (2004) 5923-5925.
DOI: 10.1063/1.1836870
Google Scholar
[57]
R. Thomas, D. C. Dube, M. N. Kamalasanan, S. Chandra, Optical and electrical properties of BaTiO3 thin films prepared by chemical solution deposition, Thin Solid Films 346, (1999) 212-225.
DOI: 10.1016/s0040-6090(98)01772-6
Google Scholar
[58]
S. B. Majumder, S. Bhaskar, R. S. Katiyar, Critical issues in Sol-gel Derived Ferroelectric thin films, Integrated Ferroelectrics 42 (2002) 245-292.
DOI: 10.1080/10584580210841
Google Scholar
[59]
MOCVD Basics and Applications, Samsung Advanced Institute of Technology, 2004.
Google Scholar
[60]
R. Thomas, R. Bhakta, A.Milanov, U.Patil, A. Devi, P. Ehrhart, Thin films of ZrO2 for high-k applications from engineered alkoxide and amide based MOCVD precursors, Chemical Vapor Deposition 13 (2007) 98-104.
DOI: 10.1002/cvde.200606512
Google Scholar
[6]
M. Dawber, K. M. Rabe, J. F. Scott, Physics of thin-film ferroelectric oxides, Rev. Mod. Phys. 77 (2005) 1083-1130.
DOI: 10.1103/revmodphys.77.1083
Google Scholar
[62]
A. Kumar, R. S. Katiyar, J. F. Scott, Magnon Raman spectroscopy and in-plane dielectric response in BiFeO3:Relation to the Polomska transition, Phy. Rev. B 85 (2012) 224410-224414.
DOI: 10.1103/physrevb.85.224410
Google Scholar
[63]
R.Thomas, S. Mochizuki, T. Mihara, T.Ishida, Preparation of Pb(Zr,Ti)O3 thin films on platinized glass substrates by RF-magnetron sputtering with Stoichiometric single oxide target: Structural, microstructural and ferroelectric properties, Thin Soild Films 413, (2002) 65-75.
DOI: 10.1016/s0040-6090(02)00354-1
Google Scholar
[64]
L. F. Edge, D.G. Schlom, R. M. W. P. Sivasubramani, B. Holländer, and J. Schubert, Electrical Characterization of Amorphous Lanthanum Aluminate Thin Films Grown by Molecular Beam Deposition on Silicon, Appl. Phys. Lett. 88 (2006) 112907.
DOI: 10.1063/1.2182019
Google Scholar
[65]
Steven M. George "Atomic Layer Deposition: An Overview". Chem. Rev. 110(1) (2010) 111-131.
Google Scholar
[66]
K. S. Takahashi, M. Kawasaki, Y. Tokura, Interface ferromagnetism in oxide superlattices of CaMnO3/CaRuO3. Appl. Phys. Lett. 79 (2001) 1324–1326.
DOI: 10.1063/1.1398331
Google Scholar
[67]
P. A. Salvador, A-M. Haghiri-Gosnet, B. Mercey, M. Hervieu, B. Raveau, Growth and magnetoresistive properties of (LaMnO3)m(SrMnO3)n superlattices, Appl. Phys. Lett. 75 (1999) 2638–2640.
DOI: 10.1063/1.125103
Google Scholar
[68]
H. Yamada, M. Kawasaki, T. Lottermoser, T. Arima, Y. Tokura, LaMnO3/SrMnO3 interfaces with coupled charge-spin-orbital modulation, Appl. Phys. Lett. 80 (2006) 52506-52508.
DOI: 10.1063/1.2266863
Google Scholar
[69]
A. Ohtomo and H. Y. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 hetero- interface. Nature 427 (2004) 423–426.
DOI: 10.1038/nature02308
Google Scholar
[70]
S. S. A. Seo, M. J. Han, G. W. J. Hassink, W. S. Choi, S. J. Moon, J. S. Kim, T. Susaki, Y. S. Lee, J. Yu, C. Bernhard, H. Y. Hwang, G. Rijnders, D. H. A. Blank, B. Keimer, and T. W. Noh, Two-dimensional confinement of 3d1 electrons in LaTiO3-LaAlO3 multilayers, Phys. Rev. Lett. 104 (2010) 036401(4pp.).
DOI: 10.1103/physrevlett.104.036401
Google Scholar
[7]
N. Kida, H. Yamada, H. Sato, T. Arima, M. Kawasaki, H. Akoh, and Y. Tokura, Optical magnetoelectric effect of patterned oxide superlattices with ferromagnetic interfaces, Phys. Rev. Lett. 99 (2007) 197404 (4p.).
DOI: 10.1103/physrevlett.99.197404
Google Scholar
[72]
Julie A. Bert, Beena Kalisky, Christopher Bell, Minu Kim, Yasuyuki Hikita, Harold Y. Hwang & Kathryn A. Moler, Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface, Nature Phys. 7 (2011) 767–771.
DOI: 10.1038/nphys2079
Google Scholar
[73]
A. Tsukazaki, A. Ohtomo, T. Kita, Y. Ohno, H. Ohno, M. Kawasaki, Quantum Hall effect in polar oxide heterostructures, Science 315, (2007) 1388–1391.
DOI: 10.1126/science.1137430
Google Scholar
[74]
A. Tsukazaki, S. Akasaka, K. Nakahara, Y. Ohno, H. Ohno, D. Maryenko, A. Ohtomo & M. Kawasaki, Observation of the fractional quantum Hall effect in an oxide. Nature Mater. 9 (2010) 889–893.
DOI: 10.1038/nmat2874
Google Scholar
[75]
Y. Kozuka, A. Tsukazaki, D. Maryenko, J. Falson, S. Akasaka, K. Nakahara, S. Nakamura, S. Awaji, K. Ueno, and M. Kawasaki, Insulating phase of a two-dimensional electron gas in MgxZn1-xO/ZnO heterostructures below ν = 1/3, Phys. Rev. B 84 (2011) 033304.
DOI: 10.1103/physrevb.84.033304
Google Scholar
[76]
H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa and Y. Tokura, Emergent phenomena at oxide interfaces, Nature Mater. 11 (2012) 103.
DOI: 10.1038/nmat3223
Google Scholar
[77]
N. Ortega, A. Kumar, O. A. Maslova, Yu. I. Yuzyuk, J. F. Scott, and R. S. Katiyar, Effect of periodicity and composition in artificial BaTiO3/(Ba,Sr)TiO3 superlattices, Phys. Rev. B 83 (2011) 144108.
DOI: 10.1590/1980-5373-mr-2018-0389
Google Scholar
[78]
A. Scalabrin, A.S. Chaves, D.S. Shim, and S.P.S. Porto, Temperature dependence of the A1 and E optical phonons in BaTiO3, Phys. Status Solidi B 79 (1977) 731.
DOI: 10.1002/pssb.2220790240
Google Scholar
[79]
D.G. Schlom, L.-Q. Chen, C.-B. Eom, K.M. Rabe, S.K. Streiffer, J.-M. Triscone, Strain Tuning of Ferroelectric Thin Films, Ann. Rev. Mater. Res. 37 (2007) 589–626.
DOI: 10.1146/annurev.matsci.37.061206.113016
Google Scholar
[80]
J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures, Science 299 (2003)1719–1722.
DOI: 10.1126/science.1080615
Google Scholar
[8]
R. Ramesh, N. A. Spaldin, Multiferroics: Progress and Prospects in Thin Films, Nature Mater. 6 (2007) 21−29.
DOI: 10.1038/nmat1805
Google Scholar
[82]
N. A. Hill, Why Are There So Few Magnetic Ferroelectrics? J. Phys. Chem. B 104 (2000) 29.
Google Scholar
[83]
http://www.ferroic.mat.ethz.ch/research/projects_general/project_6
Google Scholar
[84]
J.H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y.L. Li, S. Choudhury, W. Tian, M.E. Hawley, B. Craigo, A.K. Tagantsev, X.Q. Pan, S.K. Streiffer, L.Q. Chen, S.W. Kirchoefer, J. Levy, D.G. Schlom, Room-temperature ferroelectricity in strained SrTiO3, Nature 430 (2004) 758–761.
DOI: 10.1038/nature02773
Google Scholar
[85]
S.K. Streiffer, J.A. Eastman, D.D. Fong, C. Thompson, A. Munkholm, M.V. Ramana Murty, O. Auciello, G.R. Bai, G.B. Stephenson, Observation of Nanoscale 180° Stripe Domains in Ferroelectric PbTiO3 Thin Films, Phys. Rev. Lett. 89 (2002) 067601.
DOI: 10.1103/physrevlett.89.067601
Google Scholar
[86]
E. Bousquet, N. A. Spaldin, P. Ghosez, Strain-Induced Ferroelectricity in Simple Rocksalt Binary Oxides, Phys. Rev. Lett. 104 (2010) 037601.
DOI: 10.1103/physrevlett.104.037601
Google Scholar
[87]
J. H. Lee and K. M. Rabe, Epitaxial-Strain-Induced Multiferroicity in SrMnO3 from First Principles, Phys. Rev. Lett. 104 (2010) 207204.
Google Scholar
[88]
H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamancaiba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh, Multiferroic BaTiO3-CoFe2O4 Nanostructures, Science 303 (2004) 661.
DOI: 10.1126/science.1094207
Google Scholar
[89]
Mirza Bichurin, V. Petrov, A. Zakharov , D. Kovalenko , S. C. Yang , D. Maurya , V. Bedekar and S. Priya, Magnetoelectric Interactions in Lead-Based and Lead-Free Composites, Materials, 4 (2011) 651-702
DOI: 10.3390/ma4040651
Google Scholar
[90]
François Léonard and A. Alec Talin, Electrical contacts to one- and two-dimensional nanomaterials, Nature Nanotechnology 6 (2011) 773-783
DOI: 10.1038/nnano.2011.196
Google Scholar