Solidification Behavior of Sn Cu Based Peritectic Alloys: A Short Review

Article Preview

Abstract:

Microstructure evolution that exhibit from the reaction of Sn Cu pritectic alloys become an interesting phenomenon that need to be explored since the properties of the alloys depend on their microstructures. Due to less understanding on the solidification behavior on peritectic alloys, extensive research are made on this type of alloys to gain more information regarding on the microstructure formation. This paper reviews the mechanisms on peritectic solidification on Sn Cu based peritectic alloys. The changed in peritectic microstructure due to external source such as direct current (DC) field, ultrasonic field and isothermal time are discuss respectively through this paper. The focus is made on peritectic solidification of Sn Cu based alloy since it has a promising potential for high temperature lead-free solder application.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 273)

Pages:

34-39

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Valloton, J.-D. Wagnie`re, and M. Rappaz: Act. Mater. Vol. 60 (2012), p.3840–3848.

Google Scholar

[2] Z. Xuan, F. Mao, Z. Cao, T. Wang, and L. Zou: J. Alloys Compd. Vol. 721 (2017), pp.126-133.

Google Scholar

[3] S. Akamatsu, and M. Plapp: Curr. Opin. Solid State Mater. Sci. Vol. 20(1) (2016), pp.46-54.

Google Scholar

[4] X.Li, A. Gagnoud, J. Wang, X. Li, Y. Fautrelle, Z. Ren, X. Lu, G. Reinhart, and H. Nguyen-Thi: Act. Mater. Vol. 73 (2014), pp.83-96.

DOI: 10.1016/j.actamat.2014.03.057

Google Scholar

[5] W.Zhai, and B. Wei: Mater. Lett. Vol. 108 (2013), pp.145-148.

Google Scholar

[6] P. Peng, P: J. of Alloys Compd. Vol. 693 (2017), pp.799-807.

Google Scholar

[7] P. Peng, X. Li, Y. Su, and J. Guo: Mater. Chemistry Phys. Vol. 177 (2016), pp.496-504.

Google Scholar

[8] J.E. Spinelli and A. Garcia: Mater. Sci. Eng. A. Vol. 586 (2013), pp.195-201.

Google Scholar

[9] M.A.A. Mohd Salleh, S.D. McDonald, C.M. Gourlay, H. Yasuda, and K. Nogita: Mater. Des. Vol. 108 (2016), p.418–428.

Google Scholar

[10] M.A.A. Mohd Salleh, S. McDonald, and K. Nogita: Appl. Mech. Mater. Vol. 421 (2013), pp.260-266.

Google Scholar

[11] K. Biswas, R. Hermann, H. Wendrock, J. Priede, G. Gerbeth, and B. Buechner: J. Alloys Compd. Vol. 480(2) (2009), pp.295-298.

DOI: 10.1016/j.jallcom.2009.01.106

Google Scholar

[12] E. Yılmaza, E. Çadırlıb, E. Acerc, and M. Gündüzd: Mater. Res. Vol. 19(2) (2016), pp.370-378.

Google Scholar

[13] D.M. Rosa, J.E. Spinelli, W.R. Osório, and A. Garcia: J. Power Sources Vol. 162(1) (2006), pp.696-705.

Google Scholar

[14] M.A.A. Mohd Salleh, S.D. McDonald, C.M. Gourlay, S.A. Belyakov, H. Yasuda, and K. Nogita: J. Electron. Mater. Vol. 45(1) (2016).

Google Scholar

[15] M.I.I. Ramli, N. Saud, M.A.A. Mohd Salleh, M.N. Derman, and R.M. Said: Microelectron. Reliab Vol. 65 (2016), p.255–264.

Google Scholar

[16] F. Somidin, M.A.A. Mohd Salleh, and K.R. Ahmad: Adv. Mater. Res. Vol. 620 (2013), pp.105-111.

Google Scholar

[17] M.A.A. Mohd Salleh, S.D. McDonalda, Y. Terada, H. Yasuda, and K. Nogita: Mater. Des. Vol. 82 (2015), p.136–147.

Google Scholar

[18] M.A.A. Mohd Salleh, M. H. Z. Hazizi, Z. A. Ahmad, K. Hussin, and K. R. Ahmad: Adv. Mater. Res. (2011).

Google Scholar

[19] S.A. Musa, M.A.A. Mohd Salleh, and N. Saud: Adv. Mater. Res. Vol. 795 (2013), pp.518-521.

Google Scholar

[20] F.C. Campbell, in: Invariant Transformation Structures in Metallography and Microstructures, Volume 9 of Phase Diagrams—Understanding the Basics Peritectic Alloy Systems, chapter, 6, ASM Handbook, ASM International (2012).

Google Scholar

[21] G. Boussinot, E.A. Brener, and D.E. Temkin: Act. Mater. Vol. 58(5) (2010), pp.1750-1760.

Google Scholar

[22] J.P. Mogeritsch, Investigation on Peritectic Solidification using a Transparent Organic System. 2012, University of Leoben.

Google Scholar

[23] H.P. Ha, and J.D. Hunt: Metall. Mater. Trans. A Vol. 31(1) (2000), pp.29-34.

Google Scholar

[24] Invariant Transformation Structures, Metallography and Microstructures, Volume 9, ASM International (2004).

Google Scholar

[25] J.R.G. Sander, B.W. Zeiger, and K.S. Suslick: Vol. 21 (2014), p.1908–(1915).

Google Scholar

[26] X. Jian, H. Xua, T.T. Meek, and Q. Han: Mater. Lett. Vol. 59 (2005), p.190–193.

Google Scholar

[27] W. Zhai, Z.Y. Hong, X.L. Wen, D.L. Geng, and B. Wei: Mater. Des. Vol. 72 (2015), pp.43-50.

Google Scholar

[28] L. HaiYan, L. ShuangMing, L. Lin, and F. Heng Zhi: Sci. China Series G: Phys., Mech. Astronomy Vol. 50(4) (2007).

Google Scholar

[29] G. Zeng, D. McDonald, Stuart, D. Mu, Y. Terada, H. Yasuda, Q. Qinfen, M. A. A. Mohd Salleh and K. Nogita: J. Alloys Compd. Vol. 685 (2016), pp.471-482.

Google Scholar

[30] J. Valloton, J.-D. Wagniere, and M. Rappaz: Act. Mater. Vol. 60 (2012), p.3840–3848.

Google Scholar

[31] F. Kohler, L. Germond, J.-D. Wagniere, and M. Rappaz: Act. Mater. Vol. 57 (2009), p.56–68.

Google Scholar