Influence of Bismuth in Sn-Based Lead-Free Solder – A Short Review

Article Preview

Abstract:

Since the implementation of RoHS in avoidance to useof lead in electronic packaging, the development of lead-free solder has become priority. However, some of the potential candidates for lead-free solder have weaknesses such as slightly higher of melting point, excessive of intermetallic growth (IMC) and uncertainty service reliability that need to overcome. One of the common methods used to improve the characteristic and properties of the lead-free solder is by the addition of another alloying element. One of the promising alloying elements is bismuth (Bi). A few researchers have found out that Bi has a capability to improve the microstructure, reduce the melting temperature and controlled the IMC growth, yet, its advantageous is believed have not been thoroughly explored. Influence of (Bi) in lead-free solder alloys give interest to be studied and understand from different perspective due to its capability to improve the wettability and solder spread, and also reduce the melting temperatures of the solder. In this paper, a review on influence of Bi inSn-based lead-free solder and its advantageous were discussed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 273)

Pages:

40-45

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. A. A. MohdSalleh, Microstructure Formation in Reinforced Sn-Cu Lead-free Solder Alloys, The University of Queensland, (2016).

Google Scholar

[2] C. Aksoy, T. Mousavi, G. Brittles, C. R. M. Grovenor, and S. C. Speller, IEEE Trans. Appl. Supercond., vol. 26 (2016), p.3.

DOI: 10.1109/tasc.2016.2539423

Google Scholar

[3] S. Cheng, C. M. Huang, and M. Pecht, Microelectron. Reliab., (2016) p.1.

Google Scholar

[4] X. Hu, Y. Li, Y. Liu, and Z. Min, J. Alloys Compd., vol. 625 (2015), p.241.

Google Scholar

[5] J. Zhao, L. Qi, X. M. Wang, and L. Wang, J. Alloys Compd., vol. 375 (2004), pp.196-201.

Google Scholar

[6] B. L. Silva, A. Garcia, and J. E. Spinelli, J. Alloys Compd., vol. 691 (2017), p.600.

Google Scholar

[7] X. Hu, K. Li, and Z. Min, J. Alloys Compd., vol. 566 (2013), p.239.

Google Scholar

[8] H. Chen, Y. L. Tsai, Y. T. Chang, and A. T. Wu, J. Alloys Compd., vol. 671 (2016), p.100.

Google Scholar

[9] M. A. A. MohdSalleh, A. M. M. Al Bakri, M. H. ZanHazizi, F. Somidin, N. F. MohdAlui, and Z. A. Ahmad, Mater. Sci. Eng. A, vol. 556 (2012), p.633.

Google Scholar

[10] M. A. A. MohdSalleh, S. D. McDonald, Y. Terada, H. Yasuda, and K. Nogita, Mater. Des., vol. 82 (2015), p.136.

Google Scholar

[11] S. A. Musa, M. Arif, A. Mohd, and N. Saud, Adv. Mater. Res. vol. 795 (2013), p.519.

Google Scholar

[12] M. J. Rizvi, Y. C. Chan, C. Bailey, H. Lu, and M. N. Islam, J. Alloys Compd., vol. 407 (2006), no. 1–2, p.208.

Google Scholar

[13] C. B. L. & S. B. J. J.W. Yoon, Mater. Sci. Technol., vol. 19 (2003), p.1101.

Google Scholar

[14] M. L. Huang and L. Wang, Metall. Mater. Trans. A, vol. 36 (2005), p.1439.

Google Scholar

[15] M. H. Mahdavifard, M. F. M. Sabri, D. A. Shnawah, S. M. Said, I. A. Badruddin, and S. Rozali, Microelectron. Reliab., vol. 55 (2015), p.1886.

Google Scholar

[16] O. Krammer, T. Garami, B. Horváth, T. Hurtony, B. Medgyes, and L. Jakab, J. Alloys Compd., vol. 634 (2015), p.156.

DOI: 10.1016/j.jallcom.2015.02.092

Google Scholar

[17] P. L. Sudan Ahmed, MunshiBasit, Jeffrey C. Suhling, 15th IEEE Intersociety Conf. on Thermal and Thermomechanical Phenomena in Electronic Systems, 2016, p.746.

Google Scholar

[18] K. Nogita et al., Int. Conf. on Electron. Packag, 2017, p.2.

Google Scholar

[19] S. A. Belyakov, T. Nishimura, K. Sweatman, K. Nogita, and C. M. Gourlay, 2016 Int. Conf. Electron. Packag. ICEP 2016, p.222.

Google Scholar

[20] Y. Zhong, W. Liu, C. Wang, X. Zhao, and J. F. J. M. Caers, Mater. Sci. Eng. A, vol. 652 (2016), p.264.

Google Scholar

[21] M. A. A. Mohd Salleh, R. M. Said, N. Saud, H. Yasuda, S. D. McDonald, and K. Nogita, Key Eng. Mater., vol. 700 (2016), p.161.

Google Scholar

[22] B. Sandy, E. Briggs and R. Lasky, Indium Corp. Tech Pap., (2011), p.1.

Google Scholar

[23] D. B. Witkin, Mater. Sci. Eng. A, vol. 532 (2012), p.212.

Google Scholar

[24] D. B. Witkin, J. Electron. Mater., vol. 41 (2012), p.190.

Google Scholar

[25] S. A. Belyakov, J. W. Xian, K. Sweatman, T. Nishimura, T. Akaiwa, and C. M. Gourlay, J. Alloys Compd., vol. 701 (2017), p.321.

DOI: 10.1016/j.jallcom.2016.12.404

Google Scholar

[26] L. Yang, S. Fenglian, and V. Liu, IFOST: Int. Forum on Strategic Tech., 2010, p.1.

Google Scholar

[27] C. Z. L. T.y. Kang, Y.Y. Xiu, L. Hui, J.J. Wang, W.P. Tong, J. Mater. Sci. Technol., vol. 27 (2011), p.741.

Google Scholar

[28] F. Gnecco et al., Int. J. Adhes. Adhes., vol. 27 (2007), p.409.

Google Scholar

[29] A. A. El-Daly, A. M. El-Taher, and S. Gouda, J. Alloys Compd., vol. 627 (2015), p.268.

Google Scholar

[30] M. N. ErvinaEfzan, M. N. NurFaziera, and M. M. A. B. Abdullah, AIP Conf. Proc., vol. 1835 (2017), p.1.

Google Scholar

[31] H. R. Kotadia, P. D. Howes, and S. H. Mannan, Microelectron. Reliab., vol. 54 (2014), p.1253.

Google Scholar

[32] M. Abtew and G. Selvaduray, Mater. Sci. Eng. R Reports, vol. 27 (2000), p.95.

Google Scholar

[33] G. Ren, I. J. Wilding, and M. N. Collins, J. Alloys Compd., vol. 665 (2016), p.25.

Google Scholar

[34] R. K. Chinnam, C. Fauteux, J. Neuenschwander, and J. Janczak-Rusch, Acta Mater., vol. 59 (2011), p.1474.

Google Scholar

[35] S. Schindler, M. Mueller and S. Wiese, Electronics System-Integration Conf., (2014).

Google Scholar

[36] M. A. A. M. Salleh, S. D. Mcdonald, and K. Nogita, vol. 242 (2017), p.235.

Google Scholar

[37] M. A. A. Mohd Salleh, S. McDonald, and K. Nogita, Appl. Mech. Mater., vol. 421(2013), p.260.

Google Scholar