Effect of Phosphorus and Nickel on Electrochemical Migration of Sn-3Ag-0.7Cu Solder Paste in Simulated Body Fluid

Article Preview

Abstract:

Electrochemical migration (ECM) behaviour of Sn-3Ag-0.7Cu and Sn-3Ag-0.7Cu-0.03P-0.005Ni solder alloys were investigated using simulated body fluid (SBF) solution. In electronic devices, ECM phenomenon potentially leads to incompetence or failure of the whole devices. According to water drop test (WDT), mean-time-to-failure (MTTF) of commercially used Sn-3Ag-0.7Cu solder alloy was prolonged with addition of phosphorus (P) and nickel (Ni) as alloying elements. According to microstructure of each solder paste alloy which was observed using field emission scanning electron microscope (FESEM), dendrite structure in Sn-3Ag-0.7Cu-0.03P-0.005 Ni solder was lesser than in plain the Sn-3Ag-0.7Cu. This phenomenon suggested that presence of P and Ni retarded the growth of dendritic thus improved its corrosion resistance. Therefore, Sn-3Ag-0.7Cu-0.03P-0.005Ni possessed a good corrosion resistance in SBF medium.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 273)

Pages:

61-65

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Meschter, P. Snugovsky, Z. Bagheri, E. Kosiba, M. Romansky, J. Kennedy and L. Snugovsky: Jom. J. Min. Met. Mat. Vol. 66 (2014) p.2320.

DOI: 10.1007/s11837-014-1183-9

Google Scholar

[2] R. Shrestha, T.Y. Choi, W. Chang and D. Kim: Sensors Vol. 11 (2011) p.8826.

Google Scholar

[3] M.F.M. Nazeri, M.G. Affendy and A.A. Mohamad: Int. J. Electrochem. Sci Vol. 7 (2012) p.4182.

Google Scholar

[4] M. Wang, J. Wang, H. Feng and W. Ke: J. Mater. Sci: Mater. Electron. Vol. 23 (2013) p.148.

Google Scholar

[5] M. Abtew, G. Selvaduray: Mater. Sci. Eng Vol. 27 (2000) p.95.

Google Scholar

[6] B. Noh and S. Fung: Circuit. World Vol. 3 (2008), p.8.

Google Scholar

[7] M.M. Billah, KM. Shorowordi and A. Sharif: J. Alloys Compds. Vol. 585 (2014) p.32.

Google Scholar

[8] J. Jung, S. Lee, H. Lee, Y.Joo and Y. Park: Microelectron. Eng. Vol. 85 (2008) p.1597.

Google Scholar

[9] N.A.A.M. Amin, D.A. Shnawah, S.M. Said an M.F.M. Sabri: J. Alloy. Compd. Vol. 599 (2014) p.114.

Google Scholar

[10] F. Axisa, P. Jourand, E. Lippens, M. Rymarczyk-Machal, N.D. Smet, E. Schacht., J. Vanfleteren, R. Puers and R. Cornelissen: Proc. IEEE Eng. Med. Biol. Soc. Vol. 31 (2009) p.4864.

DOI: 10.1109/iembs.2009.5332451

Google Scholar

[11] M. Reid, J. Punch, M. Collins and C. Ryan: Solder. Surf. Mt. Tech. Vol. 20 (2008) p.3.

Google Scholar

[12] S. Chellvarajoo, M.Z. Abdullah and Z. Samsudin: Mater. Des. Vol. 67 (2015) p.197.

Google Scholar

[13] T. Kokubo and H. Takadama: Biomaterials Vol. 27 (2006) p.2907.

Google Scholar

[14] D.Q. Yu, W. Jillek, E. Schmitt, J. Mater. Sci: Mater. Electron 17 (2006) p.219.

Google Scholar

[15] B. Medgyes, D. Rigler, B. Illes and L. Gal, International Symposium for Design and Technology of Electronic Packaging, IEEE (Institute of Electrical and Electronics Engineers, United States, 2012), pp.147-150.

DOI: 10.1109/siitme.2012.6384415

Google Scholar

[16] B. Medgyes, B. Illes and G. Harsanyi: Electr. Eng Vol. 57 (2013) p.1.

Google Scholar

[17] L. Hua and C. Yang: Microelectron. Reliab Vol. 51 (2011) p.2274.

Google Scholar

[18] Saud and Azman: 2010. J. Mater. Sci. Mater. Electron. Vol. 21 (2010) p.1083.

Google Scholar