Corrosion Performance of Sn-9Zn and Sn-0.7Cuin 3.5% NaCl Solution

Article Preview

Abstract:

Corrosion properties of Sn-9Zn and Sn-0.7Cu solder were investigated in 3.5 wt.% NaCl. The scanning rates used were fixed at 1.0mVs-1 to study the effect of diffferent adding element which is Cu and Zn into the corrrosion properties of Sn-based solder. The morphological and structural properties of the samples were compared before and after the corrosion. The morphological analysis observed two types of corrosion product which is compacted and loosely-compacted corrosion product after the samples was polarized in 3.5% NaCl solution.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 273)

Pages:

56-60

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Tian, P. J. Shang, and Z. Q. Liu, Precise Cr-marker investigation on the reactive interface in the eutectic SnIn solder joint,, Mater. Lett., vol. 121, p.185–187, (2014).

DOI: 10.1016/j.matlet.2014.01.170

Google Scholar

[2] Y. Zhang, Tin and Tin Alloys for Lead-Free Solder,, Mod. Electroplat. Fifth Ed., p.139–204, (2011).

Google Scholar

[3] M. Ishikawa, H. Sasaki, S. Ogawa, M. Kohinata, a. Mishima, and H. Yoshida, Application of Gold-Tin Solder Paste for Fine Parts and Devices," Proc. Electron. Components Technol. 2005. ECTC ,05., p.701–709, (2005).

DOI: 10.1109/ectc.2005.1441346

Google Scholar

[4] C. M. Miller, I. E. Anderson, and J. F. Smith, A viable tin-lead solder substitute: Sn-Ag-Cu,, J. Electron. Mater., vol. 23, no. 7, p.595–601, (1994).

DOI: 10.1007/bf02653344

Google Scholar

[5] X. Chen, A. Hu, M. Li, and D. Mao, Effect of a trace of Cr on intermetallic compound layer for tin-zinc lead-free solder joint during aging,, J. Alloys Compd., vol. 470, no. 1–2, p.429–433, (2009).

DOI: 10.1016/j.jallcom.2008.02.112

Google Scholar

[6] M. F. M. Nazeri and et al., Effect of polarizations on Sn–Zn solders alloys in alkaline electrolyte,, J. Alloys Compd., vol. 606, p.278–287, (2014).

DOI: 10.1016/j.jallcom.2014.04.034

Google Scholar

[7] L. Zhang and K. N. Tu, Structure and properties of lead-free solders bearing micro and nano particles,, Mater. Sci. Eng. R Reports, vol. 82, p.1–32, (2014).

DOI: 10.1016/j.mser.2014.06.001

Google Scholar

[8] W. R. Osorio, E. S. Freitas, J. E. Spinelli, and A. Garcia, Electrochemical behavior of a lead-free Sn-Cu solder alloy in NaCl solution,, Corros. Sci., vol. 80, p.71–81, (2014).

DOI: 10.1016/j.corsci.2013.11.010

Google Scholar

[9] M. Rasid, Z. Azwan, M. F. Omar, M. Nazeri, and M. Firdaus, Polarization Study of Sn-0.7 Cu Solder Alloy in 1M Hydrochloric Solution,, in Materials Science Forum, 2017, vol. 888, p.394–399.

DOI: 10.4028/www.scientific.net/msf.888.394

Google Scholar

[10] M. N. Mohamed, N. A. Aziz, A. A. Mohamad, and M. F. M. Nazeri, Polarization Study of Sn-9Zn and Sn-37Pb Solders in Hydrochloric Acid Solution,, Int. J. Electroact. Mater, vol. 3, p.28–32, (2015).

Google Scholar

[11] M. Firdaus, M. Nazeri, and A. Azmin, Corrosion resistance of ternary Sn-9Zn-xIn solder joint in alkaline solution,, J. Alloys Compd., vol. 661, p.516–525, (2016).

DOI: 10.1016/j.jallcom.2015.11.184

Google Scholar

[12] Z. Ahmad, Basic Concepts in Corrosion. (2006).

Google Scholar

[13] F. Rosalbino, G. Scavino, D. Macciò, and A. Saccone, Influence of the alloying component on the corrosion behaviour of zinc in neutral aerated sodium chloride solution,, Corros. Sci., vol. 89, no. C, p.286–294, (2014).

DOI: 10.1016/j.corsci.2014.09.007

Google Scholar