Comparison of Sn-Sb and Sn-Ag-Cu-Ni-Ge Alloys Using Tensile Properties of Miniature Size Specimens

Article Preview

Abstract:

Tensile properties of Sn-5Sb (mass%) and Sn-3.5Ag-0.5Cu-0.07Ni-0.01Ge (mass%) were investigated using miniature size specimens and obtained results were compared. Tensile strength of both alloys increase with increasing the strain rate and decrease with increasing the temperature. Although similar dependency to the temperature is observed in 0.1% proof stress, the effect of the strain rate on it is obscure. The tensile strength and the 0.1% proof stress of Sn-3.5Ag-0.5Cu-0.07Ni-0.01Ge are higher than those of Sn-5Sb. The elongation of Sn-5Sb is relatively stable at the range from 0.4 to 0.6. The elongation of Sn-3.5Ag-0.5Cu-0.07Ni-0.01Ge which is approximately 0.3, is inferior to that of Sn-5Sb. On the basis of investigation of stress exponent, n, it was clarified that dispersion strengthening by Ag3Sn particulates in Sn-3.5Ag-0.5Cu-0.07Ni-0.01Ge is effective to prevent the degradation of creep resistance compared with Sn-5Sb that is strengthened by solid-solution of Sb in β-Sn phases and dispersion of SbSn compounds.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 273)

Pages:

83-90

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Shohji, H. Goto, K. Nakamura and T. Ookubo: Materials Transactions Vol. 46 (2005), p.2725.

Google Scholar

[2] K. Nogita, J. Read, T. Nishimura, K. Sweatman, S. Suenaga and A.K. Dahle: Materials Transactions Vol. 46 (2005), p.2419.

DOI: 10.2320/matertrans.46.2419

Google Scholar

[3] V. Chidambaram, J. Hattel and J. Hald: Microelectronic Engineering Vol. 88 (2011), p.981.

Google Scholar

[4] Y. Takahashi and I. Shohji: Proc. of 2014 IEEE 16th Electronics Packaging Technology Conference (EPTC) (2014), p.784.

Google Scholar

[5] M. McCormack, H.S. Chen, G.W. Kammlott and S. Jin: Journal of Electronic Materials Vol. 26 (1997), p.954.

Google Scholar

[6] K. Suganuma, T. Sakai, K. Kim, Y. Takagi, J. Sugimoto and M. Ueshima: IEEE Trans. Electron. Packag. Manuf. Vol. 25 (2002), p.257.

Google Scholar

[7] R.I. Rodriguez, R. Puerto, D. Ibitayo and P.O. Quintero: IEEE Trans-CPMT-A Vol. 3 (2013), p.549.

Google Scholar

[8] Y. Takaku, L. Felicia, I. Ohnuma, R. Kainuma and K. Ishida: Journal of Electronic Materials Vol. 37 (2008), p.314.

Google Scholar

[9] M. Nahavandi, M.A. Azmah Hanim, Z.N. Ismarrubie, A. Hajalilou, R. Rohaizuan and M.Z. Shahrul Fadzli: Journal of Electronic Materials Vol. 43 (2014), p.579.

DOI: 10.1007/s11664-013-2873-8

Google Scholar

[10] Z. Haidong, I. Shohji, M. Shimoda and H. Watanabe: Materials Transactions Vol. 57 (2016), p.873.

Google Scholar

[11] A.A. El-Daly, A. Fawzy, A.Z. Mohamad and A.M. El-Taher: Journal of Alloys and Compounds Vol. 509 (2011), p.4574.

DOI: 10.1016/j.jallcom.2011.01.109

Google Scholar

[12] M.A.A.M. Salleh, A.M.M.A. Bakri, M.H.Z. Hazizi, F. Somidin, N.F.M. Alui and Z.A. Ahmad: Materials Science and Engineering A - Structural Materials Properties Microstructure and Processing Vol. 3 (2012), p.633.

DOI: 10.1016/j.msea.2012.07.039

Google Scholar

[13] A.A. El-Daly, Y. Swilem and A.E. Hammad: Journal of Alloys and Compounds Vol. 471 (2009), p.98.

Google Scholar

[14] K. Kobayashi, I. Shohji and H. Hokazono: Materials Science Forum Vol. 879 (2016), p.2377.

Google Scholar

[15] M. Yamashita, S. Tada, K. Shiokawa, Japan Patent P3296289 (2002.04.12).

Google Scholar

[16] I. Shohji, S. Tsunoda, H. Watanabe, T. Asai and M. Nagano: Materials Transactions Vol. 46 (2005), p.2737.

Google Scholar

[17] Y. Kariya, T. Niini, T. Suga and M. Otsuka: Materials Transactions Vol. 46 (2005), p.2309.

Google Scholar

[18] I. Shohji, T. Osawa, T. Matsuki, Y. Kariya, K. Yasuda and T. Takemoto: Materials Transactions Vol. 49 (2008), p.1175.

Google Scholar

[19] I. Shohji and Y. Toyama: Materials Science Forum Vol. 783-786 (2014), p.2810.

Google Scholar

[20] T. B. Massalski: Binary alloy phase diagrams (ASM International, New York 1990).

Google Scholar

[21] K. Kobayashi, I. Shohji, S. Koyama and H. Hokazono: Procedia Engineering Vol. 184 (2017), p.238.

Google Scholar

[22] A.U. Telang and T. R. Bieler: JOM Vol. 57 (2005), p.44.

Google Scholar