Effect of 1-D Nano-Confinement on the Kinetics of a Click-Chemistry Surface Reaction Used in Biosensors

Article Preview

Abstract:

In semiconductor manufacturing of 3-D nano-structures, modified kinetics have been encountered for the aqueous chemical etching of thin films in nano-confined spaces. A popular explanation relies on changes in reactant concentration from the overlap of electrostatic double layers (EDL) on opposite walls of the nano-structures. In this study, the cycloaddition of dibenzylcyclooctyne-PEG3-alcohol (DBCO) to a linear azide-terminated SAM was performed in nanochannels of width varying from 62 to 32 nm. ATR-FTIR was used to monitor the reaction kinetics, characterize water structuring and determine the pH in nanochannels. Reaction kinetics were slower in nanochannels as compared to a planar surface, while pH shifts were observed in absence of EDL overlap, with a significant influence of channel width. Actually only the overall decrease in reaction rate could be explained by EDL overlap. The discussion shows that the water structuring measured in nanochannels may play a significant role in the observed phenomena.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 282)

Pages:

182-189

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Okuyama, S. Saito, Y. Hagimoto, K. Nishi, A. Suzuki, T. Toshima, and H. Iwamoto, Impact of electrostatic effects on wet etching phenomenon in nanoscale region, Solid State Phenom. 219 (2015) 115-118.

DOI: 10.4028/www.scientific.net/ssp.219.115

Google Scholar

[2] G. Vereecke, H. De Coster, P. Carolan, H. Bender, K. Willems, L.-Å. Ragnarsson, P. Van Dorpe, N. Horiguchi, and F. Holsteyns, Wet etching of TiN in 1-D and 2-D confined nano-spaces of FinFET transistors, SPCC, 27-29 March 2017; Austin, TX, USA (to be published in Microelectronic Eng.).

DOI: 10.1016/j.mee.2018.09.004

Google Scholar

[3] K. Mawatari, T. Tsukahara, Y. Tanaka, Y. Kazoe, P. Dextras, T. Kitamori, Extended Nanofluidic Systems for Chemistry and Biotechnology, Imperial College Press, London, UK, 2012, pp.121-147.

DOI: 10.1142/p813

Google Scholar

[4] K. Mawatari, Y. Kazoe, H. Shimizu, Y. Pihosh, and T. Kitamori, Extended-nanofluidics: Fundamental technologies, unique liquid properties, and application in chemical and bio analysis methods and devices, Anal. Chem. 86 (2014) 4068-4077.

DOI: 10.1021/ac4026303

Google Scholar

[5] Y. Kazoe, K. Mawatari, Y. Sugii, and T. Kitamori, Development of a measurement technique for ion distribution in an extended nanochannel by super-resolution-laser-induced fluorescence, Anal. Chem. 83 (2011) 8152-8157.

DOI: 10.1021/ac201654r

Google Scholar

[6] C.-C. Chang, Y. Kazoe, K. Morikawa, K. Mawatari, R.-J. Yang, and T. Kitamori, Numerical simulation of proton distribution with electric double layer in extended nanospaces, Anal. Chem. 85 (2013) 4468-4474.

DOI: 10.1021/ac400001v

Google Scholar

[7] A. Hibara, T. Saito, H. Kim, M. Tokoshi, T. Ooi, M. Nakao, and T. Kitamori, Anal. Chem. 74 (2002) 6170.

Google Scholar

[8] K. Morikawa, Y. Kazoe, K. Mawatari, T. Tsukahara, and T. Kitamori, Dielectric constants of liquids confined in the extended nanospace measured by a streaming potential method, Anal. Chem. 87 (2015) 1475-1479.

DOI: 10.1021/ac504141j

Google Scholar

[9] T. Tsukahara, A. Hibara, Y. Ikeda, and T. Kitamori, NMR study of water molecules confined in extended nanospaces, Angew. Chem., Int. Ed. 46 (2007) 1180-1183.

DOI: 10.1002/anie.200604502

Google Scholar

[10] R. Vos, C. Rolin, J. Rip, T. Conard, T. Steylaerts, M. Vidal Cabanilles, K. Levrie, K. Jans, and T. Stakenborg, Chemical Vapor Deposition of Azidoalkylsilane Monolayer Films, Langmuir 34 (2018) 1400-1409.

DOI: 10.1021/acs.langmuir.7b04011

Google Scholar

[11] H. Schonherr, C. Feng, and A. Shovsky, Interfacial Reactions in Confinement: Kinetics and Temperature Dependence of Reactions in Self-Assembled Monolayers Compared to Ultrathin Polymer Films, Langmuir 19 (2003) 10843-10851.

DOI: 10.1021/la034887z

Google Scholar

[12] G. Vereecke, X. Xu, W.K. Tsai, H. Yang, S. Armini, T. Delande, G. Doumen, F. Kentie, X. Shi, I. Simms, K. Nafus, F. Holsteyns, H. Struyf, and S. De Gendt, Partial Wetting of Aqueous Solutions on High Aspect Ratio Nanopillars with Hydrophilic Surface Finish, ECS J. Solid State Sci. Technol. 3 (2014).

DOI: 10.1149/2.013401jss

Google Scholar

[13] N. Vrancken, S. Sergeant, G. Vereecke, G. Doumen, F. Holsteyns, H. Terryn, S. De Gendt, and X. Xu, Superhydrophobic Breakdown of Nanostructured Surfaces Characterized in Situ Using ATR−FTIR, Langmuir 33 (2017) 3601−3609.

DOI: 10.1021/acs.langmuir.6b04471

Google Scholar

[14] M. R. Yalamanchili, A. A. Atia, and J. D. Miller, Analysis of Interfacial Water at a Hydrophilic Silicon Surface by in-Situ FTIR/Internal Reflection Spectroscopy, Langmuir 12 (1996) 4176-4184.

DOI: 10.1021/la950340b

Google Scholar

[15] D. Bottenus, Y.-J. Oh, S.M. Han, and C.F. Ivory, Experimentally and theoretically observed native pH shifts in a nanochannel array, Lab on Chip 9 (2009) 219-231.

DOI: 10.1039/b803278e

Google Scholar

[16] D.F. Evans and H. Wennerstrom, The Colloidal Domain, 2nd ed., Wiley-VCH, 1999, p.134.

Google Scholar

[17] D.A. Skoog and D.M. West, Fundamentals of Analytical Chemistry, 4th ed., Holt-Saunders Int. Ed., (1982).

Google Scholar

[18] C.S. McKay and M.G Finn, Click Chemistry in Complex Mixtures: Bioorthogonal Bioconjugation, Chemistry & Biology 21 (2014) 1075-1101.

DOI: 10.1016/j.chembiol.2014.09.002

Google Scholar

[19] G.I. Anderton, A.S. Bangerter, T.C. Davis, Z. Feng, A.J. Furtak, J.O. Larsen, T.L. Scroggin, and J.M. Heemstra, Accelerating Strain-Promoted Azide−Alkyne Cycloaddition Using Micellar Catalysis, Bioconjugate Chem. 26 (2015) 1687-1691.

DOI: 10.1021/acs.bioconjchem.5b00274

Google Scholar

[20] G.M. Barrow, Physical Chemistry, 4th ed., McGraw-Hill, 1979, p.768.

Google Scholar