300 mm Wafer Development for Pattern Collapse Evaluations

Article Preview

Abstract:

Over the past decade, many advanced drying techniques have been developed to reduce and prevent pattern collapse of high aspect ratio (HAR) structures after wet processing. However, different dimensions, profiles and materials of HAR structures used in literature make it difficult to compare the efficiency of different drying processes. In this work, standard 300 mm wafer test structures, characterization and analysis techniques have been developed for quantitative analysis of pattern collapse rate as a function of the intrinsic mechanical property of HAR structures. Such standardized single wafer evaluations are important for benchmarking different drying techniques.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 282)

Pages:

207-210

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.L. Goldfarb, J. de Pablo, P.F. Nealey, J.P. Simons, W.M. Moreau, M. Angelopoulos, J.J. de Pablo, P.F. Nealey, J.P. Simons, W.M. Moreau, M. Angelopoulos, Pap. from 44th Int. Conf. Electron, Ion, Phot. Beam Technol. Nanofabrication 18 (2000).

DOI: 10.1116/1.1313582

Google Scholar

[2] T. Tanaka, M. Morigami, H. Oizumi, T. Ogawa, Jpn. J. Appl. Phys. 32 (1993) 5813–5814.

Google Scholar

[3] Y. Jincao, M.A. Matthews, C.H. Darvin, Ind. Eng. Chem. Res. 40 (2001) 5858–5860.

DOI: 10.1021/ie010424h

Google Scholar

[4] T. Watanabe, T. Toshima, M. Nakamori, K. Egashira, Y. Ido, N. Matsumoto, T. Orii, ECS Trans. 58 (2013) 191–196.

DOI: 10.1149/05806.0191ecst

Google Scholar

[5] N. Vrancken, S. Sergeant, G. Vereecke, G. Doumen, F. Holsteyns, H. Terryn, S. De Gendt, X. Xu, Langmuir 33 (2017) 3601–3609.

DOI: 10.1021/acs.langmuir.6b04471

Google Scholar

[6] X.M. Xu, G. Vereecke, E. van den Hoogen, J. Smeers, S. Armini, T. Delande, H. Struyf, Solid State Phenom. 195 (2012) 235–238.

DOI: 10.4028/www.scientific.net/ssp.195.235

Google Scholar

[7] X. Xu, G. Vereecke, C. Chen, G. Pourtois, S. Armini, N. Verellen, W.-K. Tsai, D.-W. Kim, E. Lee, C.-Y. Lin, P. Van Dorpe, H. Struyf, F. Holsteyns, V. Moshchalkov, J. Indekeu, S. De Gendt, ACS Nano 8 (2014) 885–93.

DOI: 10.1021/nn405621w

Google Scholar

[8] G. Vereecke, X. Xu, W.K. Tsai, H. Yang, S. Armini, T. Delande, G. Doumen, F. Kentie, X. Shi, I. Simms, K. Nafus, F. Holsteyns, H. Struyf, S. De Gendt, ECS J. Solid State Sci. Technol. 3 (2014) N3095–N3100.

DOI: 10.1149/2.013401jss

Google Scholar

[9] G. Vereecke, X. Xu, W. Tsai, H. Yang, S. Armini, D. Tinne, G. Doumen, K. Frank, in:, ECS Trans., 2013, p.2115.

Google Scholar

[10] N. Vrancken, G. Vereecke, S. Bal, S. Sergeant, G. Doumen, F. Holsteyns, H. Terryn, S. De Gendt, X. Xu, Solid State Phenom. 255 (2016) 136–140.

DOI: 10.4028/www.scientific.net/ssp.255.136

Google Scholar

[11] T. Kagalwala, A. Vaid, S. Mahendrakar, M. Lenahan, F. Fang, P. Isbester, M. Shifrin, Y. Etzioni, A. Cepler, N. Yellai, P. Dasari, C. Bozdog, Proc. SPIE 9778 (2016) 97781W.

DOI: 10.1117/12.2228329

Google Scholar

[12] M.H. Madsen, P. Hansen, Surf. Topogr. Metrol. Prop. 4 (2016) 23003.

Google Scholar

[13] W.B. I. Vos, D. Hellin, J. Vertommen, M. Demand, ECS Trans. 41 (2011) 189–196.

Google Scholar